小学数学教案优秀(6篇)
作为一名教学工作者,总不可避免地需要编写教案,借助教案可以有效提升自己的教学能力。那要怎么写好教案呢?下面是小编帮大家整理的小学数学教案6篇,欢迎阅读,希望大家能够喜欢。
小学数学教案 篇1
教学过程:
一、复习有关倍数、分数和比的知识
教师出示小黑板,指名学生回答问题:
已知甲数是乙数的6倍,那么
(1)乙数是甲数的 ;
(2)甲数与乙数的比是(6):(1):
(3)甲数与甲乙两数和的比是(6):(7);
(4)乙数与甲乙两数和的比是(1):(7)。
教师:通过以上的问题,我们可以看出。如果中数是乙数的几倍。那么乙数就是甲数的几分之一。
从另一个角度看,我们也可以把乙数看作1份,那么甲数就是6份,甲乙两数的和就是7份。这样,很容易就可以得出甲数与乙数的比是6:1。甲数与甲乙两数和的比是6:7等等。
弄清这些数量关系,我们就可以在解答应用题时灵活运用。有时用两个数之间的倍数关系解答.有时用分数解答;有时用比的关系解答,有时用比例的关系解答。总之,怎样方便就怎样解答。
二、教学用不同的知识解答应用题
1.教学例6。
教师出示例6(如下),让学生仔细审题,找出题中有哪些数量,它们之间存在着什么样的关系。
少先队员在山坡上栽松树和柏树、一共栽了120棵。松树的`棵数是柏树的1倍。松树和柏树各栽了多少棵?
指名学生说数量关系,教师帮助归纳整理:题目中说松树的棵数就是柏树的4倍,那么我们可以把柏树的棵数看作1份.松树的棵数看作4份:这样,我们就可以得到它们之间的分数或者比的关系。由此,我们就可以用不同的知识来解答这道应用题。(板书如下)
共120棵
松树 柏树
4份 1份
第一种解法:
教师:我们先用它们之间的倍数关系列方程解答。设柏树栽了X棵。请同学们根据松树的棵数加上柏树的棵数等于总棵数这个等量关系列方程解答。学生在练习本上解答。(方程为:4X十X=120)
教师:如果我们设松树栽了X棵:怎么列方程?
学生:那样柏树的棵数就是 X.列出的方程就是
X一 X=120,
第二种解法:
教师:根据题里的数量关系。我们还可以得出.松树的棵数与柏树的棵数的比是4:1。这样.我们还可以用以前学过的按比例分配的方法解答。 让学生在练习本上解答。教师巡视.个别指导。集体订正:由于松树的棵数是4份,柏树的棵数是1份,总的棵数就是5份。所以,松树占总棵数的 。柏树占总棵数的 :
120 =96(棵) 120 =24(棵)
第三种解法:
教师:根据松树的棵数与柏树的棵数的比是1:1,或者由松树占总棵数的 ,还可以进一步得出,松树的棵数与总棵数的比是几比几?(答:是4:5。)
那么,根据这个关系,已知总棵树是120棵。能不能用比例的知识来解答这道题?(答:能。)
让学生在练习本上解答。教师巡视、个别指导、集体订正=
设松树栽了x棵,按比例关系列出的方程如下;
2.小结。
教师:通过这道题以上几种不同的解法,使我们进一步理解了两个数量之间的倍数关系与分数、比和比例之间的关系。应用这些关系,我们可以用不同的思路和方法来解答应用题。今后我们在解答应用题时,要把思路放得活一些,通过认真分析,弄清数量关系.怎样解答方便就怎样解答。
三、课堂练习
1.做教科书第122页做一做第1题:
让学生至少用两种方法解答这道题。做完以后,指名说一说自己是怎样解答的。
教师可以把不同方法的算式或方程写在黑板上,让学生比较。
(这道题最方便的解法是用比例的知识解答。)
=
也可以用分数解答。由铜与锡的重量比是5:7,得知合金中铜的重量是锡的 。因此,锡的重量等于350,是490千克。)
2.做教科书第122页做一做的第!题和第3题。
先让学生自己选择一种方法解答.在集体订正时。看有没有不同的解答方法,哪种方法比较方便。然后告诉学生:今后解答应用题时.只要根据具体情况选择一种自己认为最方便的方法解答就可以了。
四、作业
练习二十七的第1一5题。(其中第1题和第2题只要求用两种方法解答。)
小学数学教案 篇2
教学目标:
⒈使学生理解圆面积的含义,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。
⒉培养学生动手操作、抽象概括的能力,运用所学知识解决简单实际问题。
⒊渗透转化的数学思想。
教学重点:
圆面积的含义。圆面积的推导过程。
教学难点:
圆面积的推导过程。
教学准备:
教师准备:多媒体课件、
学生准备:
同样的三角板两个/每人。
教学过程:
一、旧知铺垫(课件出示)
1、已知r,周长的一半怎样求?
2、用手中的三角板拼三角形,长方形、正方形、平行四边形等,
说出这些图形的面积计算公式。
s=abs=a2s=ahs=ahs=(a+b)h
二、新知探究
1、什么是圆的面积?(出示纸片圆让生摸一摸)
圆所占平面大小叫做圆的面积。
2、推导圆的面积公式。
(1)演示:将等分成16份的圆展开,问可拼成一个什么样的图形?
若分的分数越多,这个图形越接近长方形。
(1)找:找出拼出的图形与圆的周长和半径有什么关系?
圆的半径=长方形的宽
圆的周长的一半=长方形的长
长方形面积=长×宽
所以:圆的面积=圆的周长的一半×圆的半径
S=πr×r
S圆=πr×r=πr2
3、你还能用其他方法推算出圆的面积公式吗?
(1)将圆16等份,取其中一份,看作是一个近似的三角形,三角形的面积是这个圆面积的。这个三角形底是圆周长的,三角形的高是圆的半径。
因为:三角形面积=×底×高
圆面积=×
=πr2
(2)将圆16等分,取其中两份,可以拼成一个近似的平行四边形。平行四边形面积是圆面积的,平行四边形的`底是,三角形的高即一个半径,
因为:平行四边形面积=底×高
圆面积=×r÷
=πr2
三、运用知识解决实际问题。(课件出示)
1、例1一个圆的直径是20m,它的面积是多少平方米?
已知:d=20厘米求:s=?
r=d÷220÷2=10(m)
s=Лr2
3.14×102
=3.14×100
=314(平方厘米)
四、当堂测评(课件出示)
1、根据下面所给的条件,求圆的面积。(40分)
r=5cmd=0.8dm
2、解答下列各题。(60分)
(1)一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?
(2)公园草地上一个自动旋转喷灌装置的射程是10m。它能喷灌的面积是多少?
学社独立完成,教师巡回指点,发现疑难。
小组内订正,评比、得分。
全班内评比出优胜小组。
五、谈收获、表决心。
教学后记
小学数学教案 篇3
教学目标:
1、使学生知道几个十就在计数器的十位上用几颗珠子表示,几个一则是在个位上用几颗珠子表示。
2、初步理解数位的意义,能正确地说出个位、十位、百位的名称和顺序。能正确熟练地读写100以内的数。
教学重点:
掌握100以内数的读法和写法。
教学难点:
知道个位和十位的意义。
教学教具:
计数器、数位表、课件、学具盒。
教学过程:
一、 创设情境,导入新课
教师出示教学情境图:这是什么?你知道每种颜色的纽扣各有多少粒吗?
学生汇报:黄色纽扣有四十粒,蓝色纽扣有二十七粒,粉色纽扣有三十三粒。
教师:你知道这些数该怎样读写呢?今天我们就来学习这块知识(板书课题)。
二、互动新授: 教学例3 用学具摆40根小棒。
教师:先说一说它的组成,然后想一想,4捆小棒(即40根)应该摆放在计数器的哪个数位上呢?
学生:试着在计数器上拨珠表示40,边拨边说:4个十在十位上,拨4颗珠子。
教师:你能对照着计数器写出这个数吗?说说你是怎么写的?
学生汇报:十位上有4个珠子,对着十位写“4”,个位上没有珠子,就对着个位“0”.
教师:大家一起来读出这个数。 学生齐读。(读作:四十)
教师说明:读数时先读十位上的数,再读个位上的'数。
教师:27和33又该怎样摆小棒?在计数器上如何拨珠?写法与读法该怎样做呢?在小组内试一试。 学生小组尝试探究,完成学习活动。
教师讲解步骤。
教师引导学生观察、思考、讨论:33中的两个“3”意思一样吗?
学生交流汇报:不一样。左边的“3”在十位上,表示的是3个十;右边的“3”在个位上,表示的是3个一。
教师小结:相同的数字在不同的数位上表示的意义不相同。
教师:三种颜色的纽扣一共是多少粒呢?(100粒)100用小棒怎样摆?
学生汇报:摆10捆小棒。 教师出示图片。 10个十在计数器上该怎样拨珠呢?
学生个别汇报,教师课件演示。
请学生对着数位表,同桌互相说一说:从右边起,第一、二、三位分别是什么数位?
每个数位上的数各表示什么?
引导学生观察:写数和读数是从哪边(左边和右边)开始的?
引导学生概括小精灵的话:读数和写数,都从高位起。
三、 巩固拓展
1、完成课本第37页做一做的第1、2题。 第1题,教师出示数位表,任意在数位表上写数字,让学生说出相应的数是多少。 第2题,由学生独立完成。完成后,教师请个别学生读数。
2、完成课本第38页练习八的第5-8题。
四、课堂小结 教师
通过本节课的学习,你有什么收获?
小学数学教案 篇4
教学目标
1、理解生活中百分率问题的含义,掌握求百分率的方法。
2、理解求百分率应用题的一般结构和求百分率思考过程的主要步骤,提高学生解决问题的能力。
3、通过解决生活中简单的实际问题,培养学生数学的应用意识。
教学重点与难点
重点:会解答求百分率(或一个数是另一个数的百分之几)的应用题。
难点:对一些百分率的理解。
教学过程:
一、回顾百分数意义——直奔课题
师:同学们前面学习百分数的意义和写法,还学习了百分数、小数和分数的互化,其实,百分数在日常生活中应用非常广泛,人们经常用百分数来解决问题。
这节课就让我们解决生活中的百分数问题。(板书课题:用百分数解决问题)
二、探索——解决问题
(一)教学例1第(1)题
1、出示信息:六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人。
提问:你能提一个求分率的数学问题吗?
(已达到《标准》的人数占六年级总人数的几分之几?)
师:谁来解答这个问题?
生:120÷160=
师:你知道这个题目真正的问题是什么呢?(出示问题)你们能解决这个问题吗?有什么疑问?(生质疑)师解疑,板书什么是达标率。
让学生说说六年级的达标率是什么意思?
怎样解决这个问题呢?(同桌进行交流)
生:表示已达标的人数占六年级学生总人数的百分之几,六年级学生总人数为单位“1”。
达标率=达标学生人数÷学生总人数
师:从这儿,我们就可知道求百分数的方法跟求一个数是另一个数的几分之几是一样的。
师:请同学们打开书第85页例1的第1部分比较一下,看有什么不同?
(学生边说老师边板书:)
生:写法不同,书本写成分数的形式了,而且多了“乘100%”
师:谁知道为什么要“乘100%”呢?不乘行吗?
生:因为如果不乘100%,结果是分数的形式;而乘了100%结果就是百分数了。现在知道了什么是达标率,也知道了怎样求达标率,能不能解决这个问题呢?(学生计算)汇报板书
师:对达标率的计算你还有疑问吗?
生:0.75×100%怎样计算呀?
师:问得好,那谁能帮他解决这个疑问呢?
生:我知道,可以把100%看作1,再把0.75化成75%就可以了。
生:老师,我不是这样想的,可以把100%中的100乘0.75,“%”照写。
老师总结:同学们都说得非常好,两种理解方法都可以,你认为哪一种更适合你学习的,你就可以选用那一种。
(板书: ×100%=0.75×100%=75%)
师:同学们现在你对求达标率这种问题会了吗?你还有没有不理解的地方?
(灵活处理)
(二)教学例1的第(2)题
解决了达标率问题,下面我们到生物组去看一看。这里有一个还没完成的试验报告。他们遇到什么困难了?什么是发芽率?(师板书)知道了什么是发芽率,怎样计算呢?你又能否像达标率一样把发芽率用公式表示出来?(让同桌带着问题讨论)学生汇报,老师完善板书。
师:现在分3大组完成这个试验报告并汇报结果,看哪一组最快最好。
师:你可以为这次试验作个总结吗?
生:从这次试验可知绿豆的发芽率最高。
生:我从这次试验可知大蒜的.发芽率最低。
生:我知道花生的发芽率比大蒜的发芽率高。
(有利于学生对百分数问题的进一步理解与学习。)
你们知道计算发芽率有什么作用呢?(生答,师小结)
三、小结运用
师:同学们对比求达标率和发芽率,你能发现它们有共同的特点吗?
生:都是两个量比较的结果、都是部分与整体的比较、都要乘100%、都是表示一个数是另一个数的百分之几、公式的分母都是单位“1”等等
师:同学们发现的真多,求百分率的问题其实都有一个特点,都是部分量与整体的比较。
师:其实,现实生活中像达标率、发芽率这样的百分数还有很多很多,你还能举例出其他的百分率吗?试试看。
学生举例:学生的出勤率、产品的合格率、小麦的出粉率、花生的出油率等等,师板书。这些百分率怎么计算呢?小组同学商量一下。
学生以4人小组合作写百分率的公式。(组长负责作好记录并汇报。)
老师这里就有一个求花生出油率的问题,想去看看吗?出示做一做第2题。
学生做题汇报。
精明小法官:
1、学校上学期种了105棵花苗,现在全部都成活,这批花苗的成活率就是105%( )。
2、王师傅生产的98个零件,全部都检测合格,这些零件的合格率就是98%( )。
3、25克盐放入100克水中,盐水的含盐率是25%( )。
4、某工人加工了103个零件,有100个合格,这些零零件的合格是100%( )。
四、全课总结
师:同学们,通过这节课的学习,你们有什么收获?
学生自由回答。
师:你认为求一个数是另一个数的百分之几(求百分率)应用题的关键是什么?方法又是怎样的?
小学数学教案 篇5
第1课时 鸡兔同笼
教学内容:P116页的练习二十五的第20题。
教学目标
知识与技能:通过复习“鸡兔同笼”问题,感受中国古代数学问题的趣味性。
过程与方法:能熟练用列表、假设等不同的方法解决“鸡兔同笼”问题,体验解决问题的方法的多样性,提高解决实际问题的能力。
情感态度价值观:通过复习,培养学生的合作意识和逻辑推理能力,在解决问题的.过程中,提高迁移思维的能力,进而体会数学的价值。
教学重点:熟练理解和掌握解决问题的不同思路和方法,让学生再一次亲历列表法、假设法等解题的过程,深刻体会解决问题的一般性策略。
教学难点:建构解决“鸡兔同笼”问题的数学模型,运用学到的解题策略熟练解决生活中的实际问题。教具学具:多媒体
教学过程
一、情境导入
师:“鸡兔同笼”是一道有名的中国古算题。最早出现在《孙子算经》中。许多小数数学问题都可以转化成这类问题。
师:你知道解决“鸡兔同笼”问题有几种方法吗?通过比较发现它们有什么特点?
生1:列表法,适合数据较小的问题。
生2:假设法,一般情况都适合,数量关系比较容易理解。
师:今天我们复习“鸡兔同笼”问题。
二、自主探究
师:摆三角形和正方形一共用了19根小棒。(任意两个图形之间没有公共边)你能算出分别摆了多少个三角形和多少个正方形吗?(学生回答)
师:星期日,小英一家八口人到博物馆参观,博物馆的票价是成人每人30元,儿童每人15元,买门票共花去210元钱,其中儿童有几人?(学生回答)
师:三年级(4)班48人去北海公园划船,租了大船和小船共10条,每6人克坐满一条大船,每4人可坐满一条小船,且每条船都没有空位,他们租大船和小船各几条?(学生回答)
三、探究结果汇报
师:通过复习“鸡兔同笼”问题,你有哪些收获?
生1:借助列表的方法,解决简单的实际问题。
生2:我学会了化繁为简的学习方法。
生3:用“假设”法解决问题的一般性。
四、师生总结收获
师:通过本课的学习,你有哪些收获?
师生总结得出:解决数学问题时,可以先提出假设,如果假设后的情况与实际不符,这时就需要进行调整。我们可以借助画图、列表等方法帮助我们进行调整,从而推算出正确结果,最后还要对结果进行检验。(逐一板书:假设、调整、检验)
板书设计
鸡兔同笼假设→调整(列表、画图)→检验
小学数学教案 篇6
知识能力
引导学生用所学知识解决生活中的存款问题。
过程方法
自主探究法
情感态度
培养学生热爱数学,热爱生活的思想。
教学重点:
引导学生用所学知识解决生活中的存款问题。
教学难点:
能根据利率表找到存款的最优方案。
教学准备:
教师准备近期银行的利率表。
学生准备近期银行的利率表。
教学思路:
1.出示存款利率表和妈妈有现金人民币2万元,要按定期存入银行,想年这一条件。学生以小组为单位设计有几种不同的存款方案,并把不同的方案表中。
2.学生汇报不同的存款方案,教师引导学生用简单的数学符号有序地表示不同案。
3.选择其中一种方案,学生独立计算到期后的'实得利息。
4.以小组为单位计算其它存款方案到期后的实得利息。
5.比较不同的存款方案到期后的实得利息,谈自己的想法。
教学过程:
一、了解利率表,小组合作完成设计方案。
用计算器算
方案一:现存三年,然后用本金加上利息200003.24%3=1944(元)。
税后利息:1944(1-20%)=1555.2(元)。
再存期一年后,税后利息:(20000+1555。2)2.25%(1-20%)=387.99(元)。
4年期满时:1555.2+387.99=1943.19(元)。
二、学生汇报不同的存款方案,教师引导学生用简单的数学符号有序地表示不同的方案。
方案一:3,1
方案二:1,1,1,1
方案三:1,1,2
方案四:1,2,1
方案五:1,3
方案六2,2
方案七:2,1,1
三、选择其中一种方案,学生独立计算到期后的实得利息。
用计算器算
方案一:现存三年,然后用本金加上利息
分层作业:
完成70页的连一连
板书设计:
存款方案
方案一:3,1
方案二:1,1,1,1
方案三:1,1,2
方案四:1,2,1
方案五:1,3
方案六2,2方案
方案七:2,1,1
课后反思:
得:学生能积极参与到课堂教学中来,课堂气氛活跃。
失:学生的策略不够全面。
设想:应注重学生方法的训练,让学生使用计算器计算。加强学生实践活动能力养,适当设计相关题目的训练。
【小学数学教案】相关文章:
小学数学教案03-17
【精选】小学数学教案07-28
(精选)小学数学教案07-06
(精选)小学数学教案07-06
[经典]小学数学教案08-09
小学数学教案[精选]08-04
小学数学教案【经典】08-01
[精选]小学数学教案07-21
小学数学教案06-14
人教版小学数学教案07-26