- 相关推荐
正弦定理教案
作为一名优秀的教育工作者,常常要根据教学需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。优秀的教案都具备一些什么特点呢?下面是小编为大家整理的正弦定理教案,希望能够帮助到大家。
正弦定理教案1
一、教学内容分析
本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。
本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。
二、学情分析
对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的`三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。
三、设计思想:
培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。本节“正弦定理”的教学,将遵循这个原则而进行设计。
四、教学目标:
1、在创设的问题情境中,让学生从已有的几何知识和处理几何图形的常用方法出发,探索和证明正弦定理,体验坐标法将几何问题转化为代数问题的优越性,感受数学论证的严谨性.
2、理解三角形面积公式,能运用正弦定理解决三角形的两类基本问题,并初步认识用正弦定理解三角形时,会有一解、两解、无解三种情况。
3、通过对实际问题的探索,培养学生的数学应用意识,激发学生学习的兴趣,让学生感受到数学知识既来源于生活,又服务与生活。
五、教学重点与难点
教学重点:正弦定理的探索与证明;正弦定理的基本应用。
教学难点:正弦定理的探索与证明。
突破难点的手段:抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生
主体下给于适当的提示和指导。
六、复习引入:
1.在任意三角形行中有大边对大角,小边对小角的边角关系?是否可以把边、角关系准确量化?
2.在ABC中,角A、B、C的正弦对边分别是a,b,c,你能发现它们之间有什么关系吗?
结论:
证明:(向量法)过A作单位向量j垂直于AC,由AC+CB=AB边同乘以单位向量。
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。
正弦定理教案2
一、教材分析
“解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验 “观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。
二、学情分析
我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。
三、教学目标
1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。
过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。
情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的`普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。
2、教学重点、难点
教学重点:正弦定理的发现与证明;正弦定理的简单应用。
教学难点:正弦定理证明及应用。
四、教学方法与手段
为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。
五、教学过程
为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:
(一)创设情景,揭示课题
问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?
1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗?
问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)
[设计说明]引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。
(二)特殊入手,发现规律
问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?
引导启发学生发现特殊情形下的正弦定理。
(三)类比归纳,严格证明
问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗?
[设计说明]此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。
正弦定理教案3
高中数学正弦定理教案,一起拉看看吧。
本节内容是正弦定理教学的第一节课,其主要任务是引入并证明正弦定理.做好正弦定理的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力.
本节课以及后面的解三角形中涉及到计算器的使用与近似计算,这是一种基本运算能力,学生基本上已经掌握了.若在解题中出现了错误,则应及时纠正,若没出现问题就顺其自然,不必花费过多的时间.
本节可结合课件“正弦定理猜想与验证”学习正弦定理.
三维目标
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法,会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.
2.通过正弦定理的探究学习,培养学生探索数学规律的思维能力,培养学生用数学的方法去解决实际问题的能力.通过学生的积极参与和亲身实践,并成功解决实际问题,激发学生对数学学习的热情,培养学生独立思考和勇于探索的创新精神.
重点难点
教学重点:正弦定理的证明及其基本运用.
教学难点:正弦定理的探索和证明;已知两边和其中一边的对角解三角形时,判断解的个数.
课时安排
1课时
教学过程
导入新课
思路1.(特例引入)教师可先通过直角三角形的特殊性质引导学生推出正弦定理形式,如Rt△ABC中的边角关系,若∠C为直角,则有a=csinA,b=csinB,这两个等式间存在关系吗?学生可以得到asinA=bsinB,进一步提问,等式能否与边c和∠C建立联系?从而展开正弦定理的探究.
思路2.(情境导入)如图,某农场为了及时发现火情,在林场中设立了两个观测点A和B,某日两个观测点的林场人员分别测到C处有火情发生.在A处测到火情在北偏西40°方向,而在B处测到火情在北偏西60°方向,已知B在A的正东方向10千米处.现在要确定火场C距A、B多远?将此问题转化为数学问题,即“在△ABC中,已知∠CAB=130°,∠CBA=30°,AB=10千米,求AC与BC的长.”这就是一个解三角形的问题.为此我们需要学习一些解三角形的必要知识,今天要探究的是解三角形的第一个重要定理——正弦定理,由此展开新课的探究学习.
推进新课
新知探究
提出问题
1阅读本章引言,明确本章将学习哪些内容及本章将要解决哪些问题?
2联想学习过的三角函数中的边角关系,能否得到直角三 角形中角与它所对的边之间在数量上有什么关系?
3由2得到的数量关系式,对一般三角形是否仍然成立?
4正弦定理的内容是什么,你能用文字语言叙述它吗?你能用哪些方法证明它?
5什么叫做解三角形?
6利用正弦定理可以解决一些怎样的三角形问题呢?
活动:教师引导学生阅读本章引言,点出本章数学知识的某些重要的实际背景及其实际需要,使学生初步认识到学习解三角形知识的必要性.如教师可提出以下问题:怎样在航行途中测出海上两个岛屿之间的距离?怎样测出海上航行的轮船的航速和航向?怎样测量底部不可到达的建筑物的高度?怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度?这些实际问题的解决需要我们进一步学习任意三角形中边与角关系的有关知识.让学生明确本章将要学习正弦定理和余弦定理,并学习应用这两个定理解三角形及解决测量中的一些问题.
关于任意三角形中大边对大角、小 边对小角的'边角关系,教师引导学生探究其数量关系.先观察特殊的直角三角形.如下图,在Rt△ABC中,设BC=a,AC=b,AB=c,根据锐角三角函数中正弦函数的定义,有ac=sinA,bc=sinB,又sinC=1=cc,则asinA=bsinB=csinC=c.从而在Rt△ABC中,asinA=bsinB=csinC.
那么对于任意的三角形,以上关系式是否仍然成立呢?教师引导学生画图讨论分析.
如下图,当△ABC是锐角三角形时,设边AB上的高是CD,根据任意角的三角函数的定义,有CD=asinB=bsinA,则asinA=bsinB.同理,可得csinC=bsinB.从而asinA=bsinB=csinC.
(当△ABC是钝角三角形时,解法类似锐角三角形的情况,由学生自己完成)
通过上面的讨论和探究,我们知道在任意三角形中,上述等式都成立.教师点出这就是今天要学习的三角形中的重要定理——正弦定理.
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即
asinA=bsinB=csinC
上述的探究过程就是正弦定理的证明方法,即分直角三角形、锐角三角形、钝角三角形三种情况进行证明.教师提醒学生要掌握这种由特殊到一般的分类证明思想,同时点拨学生观察正弦定理的特征.它指出了任意三角形中,各边与其对应角的正弦之间的一个关系式.正弦定理的重要性在于它非常好地描述了任意三角形中边与角的一种数量关系;描述了任意三角形中大边对大角的一种准确的数量关系.因为如果∠A<∠B,由三角形性质,得a<b.当∠A、∠B都是锐角,由正弦函数在区间(0,π2)上的单调性,可知sinA<sinB.当∠A是锐角,∠B是钝角时,由于∠A+∠B<π,因此∠B<π-∠A,由正弦函数在区间(π2,π)上的单调性,可知sinB>sin(π-A)=sinA,所以仍有sinA<sinB.
正弦定理的证明方法很多,除了上述的证明方法以外,教师鼓励学生课下进一步探究正弦定理的其他证明方法.
讨论结果:
(1)~(4)略.
(5)已知三角形的几个元素(把三角形的三个角A、B、C和它们的对边a、b、c叫做三角形的元素)求其他元素的过程叫做解三角形.
(6)应用正弦定理可解决两类解三角形问题:①已知三角形的任意两个角与一边,由三角形内角和定理,可以计算出三角形的另一角,并由正弦定理计算出三角形的另两边,即“两角一边问题”.这类问题的解是唯一的.②已知三 角形的任意两边与其中一边的对角,可以计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边和 角,即“两边一对角问题”.这类问题的答案有时不是唯一的,需根据实际情况分类讨论.
应用示例
例1在△ABC中,已知∠A=32.0°,∠B=81.8°,a=42.9 cm,解此三角形.
活动:解三角形就是已知三角形的某些边和角,求其他的边和角的过程,在本例中就是求解∠C,b,c.
此题属于已知两角和其中一角所对边的问题,直接应用正弦定理可求出边b,若求边c,则先求∠C,再利用正弦定理即可.
解:根据三角形内角和定理,得
∠C=180°-(∠A+∠B)=180°-(32.0°+81.8°)=66.2°.
根据正弦定理,得
b=asinBsinA=42.9sin81.8°sin32.0°≈80.1(cm);
c=asinCsinA=42.9sin66.2°sin32.0°≈74.1(cm).
点评:(1)此类问题结果为唯一解,学生较易掌握,如果已知两角及两角所夹的边,也是先利用三角形内角和定理180°求出第三个角,再利用正弦定理.
正弦定理教案4
一、教学内容分析
本节内容安排在《普通高中课程标准实验教科书?数学必修5》(北师大版)第二章,正弦定理第一课时,是在高一学生学习了三角等知识之后,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,因而定理本身的应用又十分广泛。
根据实际教学处理,正弦定理这部分内容共分为三个层次:第一层次教师通过引导学生对实际问题的探索,并大胆提出猜想;第二层次由猜想入手,带着疑问,以及特殊三角形中边角的关系的验证,通过“作高法”、“等积法”、“外接圆法”、“ 向量法”等多种方法证明正弦定理,验证猜想的正确性,并得到三角形面积公式;第三层次利用正弦定理解决引例,最后进行简单的应用。学生通过对任意三角形中正弦定理的探索、发现和证明,感受“观察――实验――猜想――证明――应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。
二、学情分析
布鲁纳指出,学生不是被动的、消极的知识的接受者,而是主动的、积极的知识的探究者。教师的作用是创设学生能够独立探究的情境,引导学生去思考,参与知识获得的过程。因此,做好“余弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。
三、设计思想:
《正弦定理》一课教学模式和策略设计就是想让素质教育如何落实在课堂教学的每一个环节上进行一些探索和研究。旨在通过学生自己的思维活动获取数学知识,提高学生基础性学力(基础能力),培养学生发展性学力(培养终身学习能力),诱发学生创造性学力(提高应用能力),最终达到素质教育目的。为此,我在设计这节课时,采用问题开放式课堂教学模式,以学生参与为主,教师启发、点拨的课堂教学策略。通过设置开放性问题,问题的层次性推进和教师启发、点拨发展学生有效思维,提高数学能力,达到上述三种学力的提高、培养和诱发。以学生参与为主,教师启发、点拨教学策略是体现以学生发展为本的现代教育观,在开放式讨论过程中,提高学生的数学基础能力,发展学生的各种数学需要,使其获得终身受用的数学基础能力和创造才能。建构主义强调,学生并不是空着脑袋走进教室的。在日常生活中,在以往的学习中,他们已经形成了丰富的经验,小到身边的衣食住行,大到宇宙、星体的运行,从自然现象到社会生活,他们几乎都有一些自己的看法。而且,有些问题即使他们还没有接触过,没有现成的经验,但当问题一旦呈现在面前时,他们往往也可以基于相关的经验,依靠他们的认知能力,形成对问题的某种解释。而且,这种解释并不都是胡乱猜测,而是从他们的经验背景出发而推出的合乎逻辑的假设。所以,教学不能无视学生的这些经验,另起炉灶,从外部装进新知识,而是要把学生现有的知识经验作为新知识
的生长点,引导学生从原有的知识经验中“生长”出新的知识经验。
为此我们根据“问题教学”模式,沿着“设置情境--提出问题--解决问题--反思应用”这条主线,把从情境中探索和提出数学问题作为教学的出发点,以“问题”为主线组织教学,形成以提出问题与解决问题相互引发携手并进的“情境--问题”学习链,使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。
根据上述精神,做出了如下设计:
1、创设一个现实问题情境作为提出问题的背景;
2、启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决过渡性问题时需要使用正弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,将过渡性问题引伸成一般的数学问题:已知三角形的两条边和一边的对角,求另一边的对角及第三边。解决这两个问题需要先回答目标问题:在三角形中,两边与它们的对角之间有怎样的关系?
3、为了解决提出的目标问题,引导学生回到他们所熟悉的直角三角形中,得出目标问题在直角三角形中的解,从而形成猜想,然后引导学生对猜想进行验证。
四、教学目标:
1.让学生从已有的几何知识出发, 通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类基本问题。
2.通过对实际问题的探索,培养学生观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。
3.通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。
4.培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
五、教学重点与难点
教学重点:正弦定理的发现与证明;正弦定理的简单应用。
教学难点:正弦定理的猜想提出过程。
六教学过程
1、设置情境
利用投影展示:一条河的两岸平行,河宽d=1km,因上游突发洪水,在洪峰到来之前,急需将码头A处囤积的.重要物资及人员用船转运到正对岸的码头B处或其下游1 km的码头C处。已知船在静水中的速度?Ovl?O= 5 km?Mh,水流速度?Ov2?O=3 km?Mh。
2、提出问题
师:为了确定转运方案,请同学们设身处地地考虑一下有关的问题,将各自的问题经小组(前后4人为一小组)汇总整理后交给我。
待各小组将题纸交给老师后,老师筛选几张有代表性的题纸通过投影向全班展示,经大家归纳整理后得到如下的5个问题:
(l)船应开往B处还是C处?
(2)船从A开到B、C分别需要多少时间?
(3)船从A到B、C的距离分别是多少?
(4)船从A到B、C时的速度大小分别是多少?
(5)船应向什么方向开,才能保证沿直线到达B、C?
师:大家讨论一下,应该怎样解决上述问题?
大家经过讨论达成如下共识:要回答问题(l),需要解决问题(2),要解决问题(2),需要先解决问题(3)和(4),问题(3)用直角三角形知识可解,所以重点是解决问题(4),问题(4)与问题(5)是两个相关问题,因此,解决上述问题的关键是解决问题(4)和(5)。
师:请同学们根据平行四边形法则,先在练习本上做出与问题对应的示意图,明确已知什么,要求什么,怎样求解。
生:船从A开往B的情况如图2,根据平行四边形的性质及解直角三角形的知识,可求得船在河水中的速度大小?Ov?O及vl与v2的夹角θ:
生:船从A开往C的情况如图3,?OAD?O=?Ov1?O= 5,?ODE?O=?OAF?O=?Ov2?O=3,易求得∠AED =∠EAF = 450,还需求θ及v。我不知道怎样解这两个问题,因为以前从未解过类似的问题。
师:请大家想一下,这两个问题的数学实质是什么?
部分学生:在三角形中,已知两边和其中一边的对角,求另一边的对角和第三边。
师:请大家讨论一下,如何解决这两个问题?
生:在已知条件下,若能知道三角形中两条边与其对角这4个元素之间的数量关系,则可以解决上述问题,求出另一边的对角。
生:如果另一边的对角已经求出,那么第三个角也能够求出。只要能知道三角形中两条边与其对角这4个元素的数量关系,则第三边也可求出。
生:在已知条件下,如果能知道三角形中三条边和一个角这4个元素之间的数量关系,也能求出第三边和另一边的对角。
师:同学们的设想很好,只要能知道三角形中两边与它们的对角间的数量关系,或者三条边与一个角间的数量关系,则两个问题都能够顺利解决。下面我们先来解答问题:三角形中,任意两边与其对角之间有怎样的数量关系?
3、解决问题
师:请同学们想一想,我们以前遇到这种一般问题时,是怎样处理的?
众学生:先从特殊事例入手,寻求答案或发现解法。直角三角形是三角形的特例,可以先在直角三角形中试探一下。
师:请各小组研究在Rt△ABC中,任意两边及其对角这4个元素间有什么关系?
多数小组很快得出结论:a/sinA = b/sinB = c/sinC。
师:a/sinA = b/sinB = c/sinC在非Rt△ABc中是否成立?
众学生:不一定,可以先用具体例子检验。若有一个不成立,则否定结论;若都成立,则说明这个结论很可能成立,再想办法进行严格的证明。
师:这是个好主意。请每个小组任意做出一个非Rt△ABC,用量角器和刻度尺量出各边的长和各角的大小,用计算器作为计算工具,具体检验一下,然后报告检验结果。
几分钟后,多数小组报告结论成立,只有一个小组因测量和计算误差,得出否定的结论。教师在引导学生找出失误的原因后指出:此关系式在任意△ABC中都能成立,请大家先考虑一下证明思路。
生:想法将问题转化成直角三角形中的问题进行解决。
生:因为要证明的是一个等式,所以应先找到一个可以作为证明基础的等量关系。
师:在三角形中有哪些可以作为证明基础的等量关系呢?
学生七嘴八舌地说出一些等量关系,经讨论后确定如下一些与直角三角形有关的等量关系可能有利用价值:1、三角形的面积不变;2、三角形同一边上的高不变;3、三角形外接圆直径不变。
师:据我所知,从AC+CB=AB出发,也能证得结论,请大家讨论一下。
生:要想办法将向量关系转化成数量关系。
生:利用向量的数量积运算可将向量关系转化成数量关系。
生:还要想办法将有三个项的关系式转化成两个项的关系式。
生:因为两个垂直向量的数量积为0,可考虑选一个与三个向量中的一个向量(如向量AC)垂直的向量与向量等式的两边分别作数量积。
师:同学们通过自己的努力,发现并证明了正弦定理。正弦定理揭示了三角形中任意两边与其对角的关系,请大家留意身边的事例,正弦定理能够解决哪些问题。
4、运用定理,解决例题
师生活动:
教师:引导学生从分析方程思想分析正弦定理可以解决的问题。
学生:讨论正弦定理可以解决的问题类型:
①如果已知三角形的任意两个角与一边,求三角形的另一角和另两边,如 ;
②如果已知三角形任意两边与其中一边的对角,求另一边与另两角,如 。
师生:例1的处理,先让学生思考回答解题思路,教师板书,让学生思考主要是突出主体,教师板书的目的是规范解题步骤。
例1:在 中,已知 , , ,解三角形。
分析“已知三角形中两角及一边,求其他元素”,第一步可由三角形内角和为 求出第三个角∠C,再由正弦定理求其他两边。
例2:在 中,已知 , , ,解三角形。
例2的处理,目的是让学生掌握分类讨论的数学思想,可先让中等学生讲解解题思路,其他同学补充交流
5、 反馈练习(教科书第5页的练习)
6、尝试小结:
教师:提示引导学生总结本节课的主要内容。
学生:思考交流,归纳总结。
师生:让学生尝试小结,教师及时补充,要体现:
(1)正弦定理的内容( )及其证明思想方法。
(2)正弦定理的应用范围:①已知三角形中两角及一边,求其他元素;②已知三角形中两边和其中一边所对的角,求其他元素。
(3)分类讨论的数学思想。
7、作业设计
作业:第10页[习题1.1]A组第1、2题。
七。教学反思
在本课的教学中,教师立足于所创设的情境,通过学生自主探索、合作交流,亲身经历了提出问题、解决问题、应用反思的过程,学生成为正弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的落实。
创设数学情境是这种教学模式的基础环节,教师必须对学生的身心特点、知识水平、教学内容、教学目标等因素进行综合考虑,对可用的情境进行比较,选择具有较好的教育功能的情境。这种教学模式主张以问题为连线组织教学活动,以学生作为提出问题的主体,因此,如何引导学生提出问题是教学成败的关键。教学实验表明,学生能否提出数学问题,不仅受其数学基础、生活经历、学习方式等自身因素的影响,还受其所处的环境、教师对提问的态度等外在因素的制约。因此,教师不仅要注重创设适宜的数学情境,而且要真正转变对学生提问的态度,提高引导水平,一方面要鼓励学生大胆地提出问题,另一方面要妥善处理学生提出的问题。教师还要积极引导学生对所提的问题进行分析、整理,筛选出有价值的问题,注意启发学生揭示问题的数学实质,将提问引向深入。
[正弦定理概念教学设计]
正弦定理教案5
一、教材分析
《正弦定理》是人教版教材必修五第一章《解三角形》的第一节内容,也是三角形理论中的一个重要内容,与初中学习的三角形的边和角的基本关系有密切的联系。在此之前,学生已经学习过了正弦函数和余弦函数,知识储备已足够。它是后续课程中解三角形的理论依据,也是解决实际生活中许多测量问题的工具。因此熟练掌握正弦定理能为接下来学习解三角形打下坚实基础,并能在实际应用中灵活变通。
二、教学目标
根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:
知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。
能力目标:探索正弦定理的.证明过程,用归纳法得出结论,并能掌握多种证明方法。
情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。
三、教学重难点
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
四、教法分析
依据本节课内容的特点,学生的认识规律,本节知识遵循以教师为主导,以学生为主体的指导思想,采用与学生共同探索的教学方法,命题教学的发生型模式,以问题实际为参照对象,激发学生学习数学的好奇心和求知欲,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化,并且运用例题和习题来强化内容的掌握,突破重难点。即指导学生掌握“观察——猜想——证明——应用”这一思维方法。学生采用自主式、合作式、探讨式的学习方法,这样能使学生积极参与数学学习活动,培养学生的合作意识和探究精神。
五、教学过程
本节知识教学采用发生型模式:
1、问题情境
有一个旅游景点,为了吸引更多的游客,想在风景区两座相邻的山之间搭建一条观光索道。已知一座山A到山脚C的上面斜距离是1500米,在山脚测得两座山顶之间的夹角是450,在另一座山顶B测得山脚与A山顶之间的夹角是300。求需要建多长的索道?
可将问题数学符号化,抽象成数学图形。即已知AC=1500m,∠C=450,∠B=300。求AB=?
此题可运用做辅助线BC边上的高来间接求解得出。
提问:有没有根据已提供的数据,直接一步就能解出来的方法?
思考:我们知道,在任意三角形中有大边对大角,小边对小角的边角关系。那我们能不能得到关于边、角关系准确量化的表示呢?
2、归纳命题
我们从特殊的三角形直角三角形中来探讨边与角的数量关系:
在如图Rt三角形ABC中,根据正弦函数的定义
正弦定理教案6
一、教学目标
【知识与技能】
掌握正弦定理及推导过程,会利用正弦定理证明简单三角形以及求解三角形边角问题。
【过程与方法】
通过三角函数,向量数量积等多处知识间联系来体现事物之间普遍联系与辩证统一。
【情感态度与价值观】
问题分析解决过程中,体会数学的严谨性。
二、教学重难点
【重点】
正弦定理证明及应用。
【难点】
正弦定理的证明,正弦定理在解三角形应用思路。
三、教学过程
(一)导入新课
提出问题:在初中已经学习过解直角三角形,已会根据直角三角形中已知的`边与角,求出未知的边与角,直角三角形存在如下边角关系,在一个三角形中各边和他所对角的正弦之比相等(画xxx展示直角三角形xxx形,引导得出正弦定理公式形式),带领学生猜测对任意三角形都成立?这就是这一节课主要研究的课题。
板书课题,正弦定理。
(二)生成新知
提问:验证任意三角形成立?还需要验证哪些三角形结论成立?
预设学生回答锐角三角形,钝角三角形。
提问:如何验证锐角三角形,钝角三角形上述结论成立?能不能转化成直角三角形研究边角关系
思考:尝试用其他方法证明正弦定理。
提问:观察正弦定理的结构,这个式子包含了哪些等式,每个等式有几个量?
学生小组讨论总结,三个等式,每个式子有四个量,如果知道其中三个可以求出第四个。
(三)巩固提高
课本例一,例二,思考利用正弦定理,可以解决斜三角形哪些类型的问题。
小组讨论,师生共同总结正弦定理解决的两类斜三角形问题。
(四)小结作业
小结:提问学生本节课有什么收获,阐述正弦定理公式,及解决的问题。
作业:思考尝试用其他方法证明正弦定理。
四、板书设计
(略)
正弦定理教案7
一、说教学内容分析
本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。
本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的'历程,进而培养学生提出问题、解决问题等研究性学习的能力。
二、说学情分析
对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。
三、说设计思想:
培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。本节“正弦定理”的教学,将遵循这个原则而进行设计。
四、说教学目标:
1、在创设的问题情境中,让学生从已有的几何知识和处理几何图形的常用方法出发,探索和证明正弦定理,体验坐标法将几何问题转化为代数问题的优越性,感受数学论证的严谨性、
2、理解三角形面积公式,能运用正弦定理解决三角形的两类基本问题,并初步认识用正弦定理解三角形时,会有一解、两解、无解三种情况。
3、通过对实际问题的探索,培养学生的数学应用意识,激发学生学习的兴趣,让学生感受到数学知识既来源于生活,又服务与生活。
五、说教学重点与难点
教学重点:正弦定理的探索与证明;正弦定理的基本应用。
教学难点:正弦定理的探索与证明。
突破难点的手段:抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给于适当的提示和指导。
六、说复习引入:
1、在任意三角形行中有大边对大角,小边对小角的边角关系?是否可以把边、角关系准确量化?
2、在ABC中,角A、B、C的正弦对边分别是a,b,c,你能发现它们之间有什么关系吗?
结论:
证明:(向量法)过A作单位向量j垂直于AC,由AC+CB=AB边同乘以单位向量。
正弦定理:在一个三角形中,各边和它所对角的`正弦的比相等。
《正弦定理》说教学反思
本节是“正弦定理”定理的第一节,在备课中有两个问题需要精心设计、一个是问题的引入,一个是定理的证明、通过两个实际问题引入,让学生体会为什么要学习这节课,从学生的“最近发展区”入手进行设计,寻求解决问题的方法、具体的思路就是从解决课本的实际问题入手展开,将问题一般化导出三角形中的边角关系——正弦定理、因此,做好“正弦定理”的教学既能复习巩固旧知识,也能让学生掌握新的有用的知识,有效提高学生解决问题的能力。
1、在教学过程中,我注重引导学生的思维发生,发展,让学生体会数学问题是如何解决的,给学生解决问题的一般思路。从学生熟悉的直角三角形边角关系,把锐角三角形和钝角三角形的问题也转化为直角三角形的性,从而得到解决,并渗透了分类讨论思想和数形结合思想等思想。
2、在教学中我恰当地利用多媒体技术,是突破教学难点的一个重要手段、利用《几何画板》探究比值的值,由动到静,取得了很好的效果,加深了学生的印象、
3、由于设计的内容比较的多,教学时间的超时,这说明我自己对学生情况的把握不够准确到位,致使教学过程中时间的分配不够适当,教学语言不够精简,今后我一定避免此类问题,争取更大的进步。
正弦定理教案8
向量证明正弦定理
表述:设三面角∠P—ABC的三个面角∠BPC,∠CPA,∠APB所对的二面角依次为∠PA,∠PB,∠PC,则Sin∠PA/Sin∠BPC=Sin∠PB/Sin∠CPA=Sin∠PC/Sin∠APB。
目录
1证明2全向量证明
证明
过A做OA⊥平面BPC于O。过O分别做OM⊥BP于M与ON⊥PC于N。连结AM、AN。显然,∠PB=∠AMO,Sin∠PB=AO/AM;∠PC=∠ANO,Sin∠PC=AO/AN。另外,Sin∠CPA=AN/AP,Sin∠APB=AM/AP。则Sin∠PB/Sin∠CPA=AO×AP/(AM×AN)=Sin∠PC/Sin∠APB。同理可证Sin∠PA/Sin∠BPC=Sin∠PB/Sin∠CPA。即可得证三面角正弦定理。
全向量证明
如图1,△ABC为锐角三角形,过点A作单位向量j垂直于向量AC,则j与向量AB的夹角为90°—A,j与向量CB的夹角为90°—C
由图1,AC+CB=AB(向量符号打不出)
在向量等式两边同乘向量j,得·
j·AC+CB=j·AB
∴│j││AC│cos90°+│j││CB│cos(90°—C)
=│j││AB│cos(90°—A)
∴asinC=csinA
∴a/sinA=c/sinC
同理,过点C作与向量CB垂直的单位向量j,可得
c/sinC=b/sinB
∴a/sinA=b/sinB=c/sinC
2步骤1
记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c
∴a+b+c=0
则i(a+b+c)
=i·a+i·b+i·c
=a·cos(180—(C—90))+b·0+c·cos(90—A)
=—asinC+csinA=0
接着得到正弦定理
其他
步骤2、
在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a·sinB
CH=b·sinA
∴a·sinB=b·sinA
得到a/sinA=b/sinB
同理,在△ABC中,
b/sinB=c/sinC
步骤3、
证明a/sinA=b/sinB=c/sinC=2R:
任意三角形ABC,作ABC的外接圆O、
作直径BD交⊙O于D、连接DA、
因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的`圆周角相等,所以∠D等于∠C、
所以c/sinC=c/sinD=BD=2R
类似可证其余两个等式。
3用向量叉乘表示面积则s = CB叉乘CA = AC叉乘AB
=> absinC = bcsinA (这部可以直接出来哈哈,不过为了符合向量的做法)
=> a/sinA = c/sinC
20xx—7—18 17:16 jinren92 |三级
记向量i,使i垂直于AC于C,△ABC三边AB,BC,接着得到正弦定理其他步骤2、在锐角△ABC中,证明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,
4过三角形ABC的顶点A作BC边上的高,垂足为D、(1)当D落在边BC上时,向量AB与向量AD的夹角为90°—B,向量AC与向量AD的夹角为90°—C,由于向量AB、向量AC在向量AD方向上的射影相等,有数量积的几何意义可知向量AB—向量AD=向量AC—向量AD即向量AB的绝对值—向量AD的绝对值—COS(90°—B)=向量的AC绝对值—向量AD的绝对值—cos(90°—C)所以csinB=bsinC即b/sinB=c/sinC(2)当D落在BC的延长线上时,同样可以证得
【正弦定理教案】相关文章:
正弦函数、余弦函数图像教案02-25
《勾股定理》说课稿01-07
《勾股定理》的说课稿01-18
勾股定理说课稿04-30
《勾股定理》优秀说课稿06-08
勾股定理说课稿15篇02-27
动能定理教学反思03-25
关于《余弦定理》说课稿范文02-09
初中数学《勾股定理》说课稿范文11-26