《圆柱的体积》教案

时间:2023-10-21 07:57:25 教案 我要投稿

【必备】《圆柱的体积》教案4篇

  作为一位无私奉献的人民教师,时常会需要准备好教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。写教案需要注意哪些格式呢?下面是小编为大家收集的《圆柱的体积》教案,仅供参考,大家一起来看看吧。

【必备】《圆柱的体积》教案4篇

《圆柱的体积》教案1

  教学内容:

  人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积

  教学目标:

  1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

  3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

  教学重点:

  掌握和运用圆柱体积计算公式。

  教学难点:

  圆柱体积计算公式的推导过程

  教学过程

  一、情景引入

  1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?

  2、提问:“能用一句话说说什么是圆柱的体积吗?”

  (设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供研究方法。)

  二、自主探究、

  1、比较大小、探究圆柱的体积与哪些要素有关。

  (1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?

  (2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

  (3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积。

  (4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。

  (设计意图:本环节教学让学生根据已有的知识解决简单的问题,通过探究活动,引导学生找出决定圆柱体积的两个因素,为学习新知识作铺垫,同时也发展了学生的抽象概括能力。)

  2、大胆猜想,感知体积公式,确定探究目标。

  (1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

  (2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

  (3)、让学生思考:怎样计算圆柱的'体积呢,依据学过的知识,你可以做出怎样的假设?

  (4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

  (设计意图:通过设疑使学生认识到学习圆柱体积公式的必要性,激发学生的探究兴趣。接着通过设计猜想的过程,充分运用学生已有的知识经验,让学生回忆了学习长方体体积时的实践方法和将圆形转化成长方形的过程,学生在如此丰富的知识经验基础上就做到了心中有数,猜想的胆量就更大,假想的合理性就更强。)

  4、确定方法,探究实验,推导公式。

  (1)、思考你发现了什么?

  (5)、学生汇报:实验的结果与猜想的结果基本相同。

  (6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。(课件出示)

  (7)、小结:要想求出一个圆柱的体积,需要知道什么条件?

  (8)、学生自学第17页例4上面的一段话:用字母表示公式。

《圆柱的体积》教案2

  教学目标:

  1、使学生能够运用公式正确地计算圆柱的体积和容积。

  2、初步学会用转化的数学思想和方法,解决实际问题的能力

  4、渗透转化思想,培养学生的自主探索意识。

  教学重点:掌握圆柱体积的计算公式。

  教学难点:灵活应用圆柱的体积公式解决实际问题。

  教学过程:

  一、复习

  1、复习圆柱体积的推导过程

  长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

  长方体的体积=底面积高,所以圆柱的体积=底面积高,即V=Sh。

  2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。

  二、解决实际问题

  1、练习三第7题。

  学生思考:要求粮囤所能装的'玉米的重量,需先知道什么?然后独立完成。

  2、练习三第5题。

  (1)指导学生变换公式:因为V=Sh,所以h=VS。也可以列方程解答。

  (2)学生选择喜爱的方法解答这道题目。

  3、练习三第8题。

  (1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为米的圆柱。

  (2)在充分理解题意后学生独立完成,集体订正。

  4、练习三第9.10题

  (1)学生独立审题,完成9.10两题。

  (2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)

  (3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。利用这个底面积再求出另一个圆柱的体积。

  三、布置作业

  完成一课三练的相关练习。

《圆柱的体积》教案3

  教学目标:

  1、结合实际,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  2、让学生经历观察、猜想、验证等数学活动过程,培养学生探究推理能力,体验数学研究的方法。

  3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

  教学重点:

  掌握和运用圆柱体积计算公式。

  教学准点:

  掌握圆柱体积公式的推导过程。

  教学设想:

  1、课前互动,我们做一个吹气球的游戏,让学生来对比气球变大后所占用空间的变化。在热烈的气氛中让学生感受物体的体积就是物体所占用空间的大小。

  2、教学伊始我创设学具槽做圆柱学具这一睛境,让学生感知圆柱体积的概念,再通过让学生给这4个圆柱学具排序这一问题设疑,让学生明确学习目标。

  3、动手实践是学生体验的主要方式,合作交流是学生体验的有效途径。所以在教学中我为图形转化、猜想推理创设有助于学生自主探究的三步曲:第一步:选择转化的方法。第二步:体验转化的过程、第三步:验证转化的结果。引导学生开展观察、操作、猜想、交流、转化的活动,让学生在数学活动中经历数学、体验数学。

  4、用字母表示公式已经是学生很熟知的几何知识,因此我为学生提供了与圆柱体积有关的字母,让他们写出相应的公式并在接下来的环节中引导学生发现公式与习题的联系,让他们对号入座。学生根据不同的公式进行计算,给4个圆柱学具排序。这样可以深入理解不同的条件、不同的方法,同样可以得到圆柱的体积,在对比算法中掌握新知。

  5、体积和容积这两个概念在五年级已经学过,学生会说意义,但是通过了解,学生并不是真正理解圆柱的体积和容积。所以我在第一次探究中安排了这样的环节,让学生在学习实践中区别圆柱的容积和体积。从形象到抽象建立圆柱的体积概念,符合学生的认知规律。第二次探究则是加入表面积这一刚刚学过的内容,让学生在为3道选择问题的练习中达到区别体积、容积、表面积的目的,从而实现学习运用的最佳状态。

  6、最后的思维训练是计算正方体中最大圆柱体的体积,给学生以生动、形象、直观的认识,此题算法多样,富于启发地清晰揭示了知识的内在规律,使它和教学过程有机组合,把学习延伸到实际,让知识在体验中生成。

  7、由于每个学生的知识经验、生活情景、思维方式的不同,对知识的学习也有独特的理解和感受。所以我让他们用今天的知识去解决生活中的问题,并写成数学日记,让他们用自己的方式去体验、探究学习过程。

  教学过程:

  一、问题导入,质疑问难

  师:老师这里有两个气球,(师从兜里掏出两个气球,将其中一个递给学生。)你试试把它们变大。(老师再把两个气球放回兜里。)为什么这个放不回去了?(因为其中一个的体积变大了。)看来它占据了很大的空间。教室中还有哪些物体占据空间?

  师:这是一个制作学具的学具槽,想一想,它可以做出什么样的学具来?

  生:圆柱学具。

  师:是的。仔细观察,你有什么发现?

  生:圆柱学具占据了学具槽的空间。

  师:这就是圆柱学具的体积。你真善于发现!能用你的话说说,什么是圆柱的体积吗?

  生:圆柱的体积就是圆柱所占空间的大小。

  师:谁来试着给这4个圆柱学具按体积从大到小排排序?你来试试。

  生:体积大小接近,不能确定。

  师:老师听懂了,无法判断的原因是不知道圆柱体积的大小,现在我们就来研究圆柱的体积。(师板书。)

  二、图形转化。猜想推理

  师:想一想,你有办法得到这4个圆柱学具的体积吗?(圆柱课件再从槽中跳出。)生:用公式计算。生:用水或沙子转化计算。师:你们是怎样转化的,具体说说。

  生:用橡皮泥转化计算。

  生:用圆形纸片叠加计算……

  师:嗯,这些方法都很好,就在今天的课堂你会选择哪种方法?

  生:因为没有实验学具,所以只能用公式计算。

  师:其他的'方法可以在课后进行。

  师:想用公式计算的同学,你想怎样推导圆柱的体积公式呢?结合你们以往学习几何图形的经验,举例说明。

  生:大部分图形公式的推导都是把新学的转化为学过的。例如:圆形可以转化为长方形。

  师:联系旧知识,采用转化法,确实不错。师:那现在它是一个圆柱,你想怎么办?

  生:像刚才一样进行平均分。

  师:你能具体说说吗?

  生:沿着圆柱的底面直径平均切分成16个小扇形。

  师:都说实践出真知,接下来就请同学们拿出学具,动手尝试着进行转化,并说说转化后的结果。

  生:将圆柱沿底面直径平均分成16个小扇形,切分之后,可以拼成一个近似的长方体。

  师:(刚才我们将圆柱沿底面直径平均分成16个小扇形,拼成一个近似的长方体。)如果想让它更近似于长方体,你想分成多少份?(32)更近似一点。(64)你呢?(128)……

  师:这是同学们刚才的转化过程。

  师:打开书,自由读,用直线标记,找出关键词,依照关键词自由读读转化的过程。

  师:现在再请一名同学到前面来演示转化过程,其他同学注意观察,圆柱转化为长方体后什么变了,什么没变7(圆柱转化为长方体时形状变了,但是它们底面积、高和体积都没变。)

  总结文字公式:长方体体积=底面积x高

  圆柱体体积=底面积x高

  师:恭喜大家,我们已经成功地推导出圆柱的体积公式。(掌声鼓励一下)老师这有一些字母:d、s、r、c、h、v、π。它们与圆柱体体积的计算公式息息相关,请你们用字母表示出圆柱的体积公式。

  生:v=shv=(d/2)2πxhv=π2xhv=(c÷π/2)2πxh

  师:对比这四个公式你又有什么新发现?(彩色粉笔画线。)

  生:相同之处都是底面积乘以高,不同是底面积求法不同。

  师:谢谢你精彩的发现,你叫什么名字,认识一下,老师会记住你的。

  三、运用公式,解决问题

  师:现在我们已经知道了圆柱的体积公式,快来解决刚才的实际问题吧!这是我们要由大到小排序的4个圆柱学具,请你们拿出题卡计算出它们的体积并排序。

  1号底面积50平方厘米,高分米:

  2号直径是10厘米,高20厘米;

  3号半径是4厘米,高22厘米;

  4号底面周长厘米,高18厘米。

  师:汇报一下你的计算和排序结果,并说说你应用了哪个公式?

  师:与他答案相同的同学举手示意一下,你是怎样做的?现在你清楚了吗?

  师:看来,灵活运用公式,并选择合理的算法。会使我们的学习更高效。

  四、巧用公式,多重探究

  师:同学们到现在为止,你都学到了哪些关于圆柱的知识?

  生:表面积、体积、容积。

  师:老师这里有一组习题。请你们选择合适的问题。

  师:读完之后,你认为求什么就可以大声地说出来。

  (生:体积、容积、表面积。)

  学具厂有一个制作学具的圆柱形铁皮桶。它的底面直径是22厘米,高是25厘米,?从里面量底面直径是20厘米,高是25厘米9底面积是380平方厘米。侧面积是1727平方厘米?

  师:说说你选择问题的根据是什么?

  生:体积是圆柱所占空间的大小。容积是圆柱能容纳物体的大小,表面积是圆柱所有面积的总和。

  五、开放训练,拓展提升

  师:学习很愉快,我们来庆祝一下:在一个棱长为a分米正方体盒中,放一个最大的圆柱体蛋糕,系上b分米长的丝带,(打结部分忽略不计)挖去1根直径为c厘米,高是d厘米的圆柱蜡烛空隙,这个蛋糕体积到底是多少呢?这次我们男女生比赛,列式不计算,看谁解法多并说明解题思路。

《圆柱的体积》教案4

  教学目标

  1.结合具体事例,经历探索容积计算问题的过程。

  2.掌握计算容积的方法,能解决有关容积的简单实际问题。

  3.在解决容积问题的过程中,体验数学与日常生活的密切联系。

  教学重点

  利用体积公式计算保温杯的容积。

  教学难点

  计算容积所需要的数据是容器内壁的高、底面直径或半径,如何获得这些数据。

  教学过程

  一、复习旧知

  1.求下列圆柱的体积(口答列式)。

  (1)底面积3平方分米,高4分米;

  (2)底面半径2厘米,高2厘米;

  (3)底面直径2分米,高3分米。

  追问:圆柱的体积是怎样计算的?(板书:V=Sh)

  2.复习容积。

  提问:什么是容积?它与物体的体积有什么区别?我们是按什么方法计算容积的?

  3.引入新课。

  我们已经学习过圆柱的体积计算,知道了容积和容积的计算方法。这节课,就在计算圆柱体积的基础上,学习圆柱的容积计算。(板书课题)

  二、教学新课

  1.教学例题。

  出示例题,读题。提问:这道题求什么?你能计算它的`容积吗?请大家仔细看一下题目,解答这道题还要注意些什么?(统一单位或改写体积单位,取近似数)指名学生板演,其余学生做在练习本上。集体订正,说明每一步求的什么,怎样求的。同时注意是怎样统一单位和取近似值的。

  2.注意体积单位和容积单位的区别,以及它们之间的换算:

  1立方分米=1升1立方厘米=1毫升

  3.注意保温杯内壁的厚度应该减去几个才是内壁的直径,高应该减去几个厚度才是内壁的高?

  4.学生独立完成。然后进行全班交流。

  三、新课小结

  1.提问:求圆柱形容器的容积要怎样计算?如果知道圆柱底面的半径或直径,怎样求圆柱的体积?

  2.计算容积与计算体积有什么相同点和不同点?

  四、提高练习

  把6个这样的保温杯倒满水,大约需要多少千克水?

  注意大头蛙的话:1毫升水重1克。

  五、巩固练习

  1.拿一个水杯,量出它的内直径和高,算一算这个水杯大约可以装多少水?

  注意:如果给出水杯的外壁直径、杯壁厚度和高,怎么计算?(内壁就减两个厚度,高减一个厚度,因为水杯没有盖。)

  2.练一练1:求水杯的水有多少是求水杯的容积吗?水杯的高度与计算容积有关吗?需要用哪个数据来计算?(杯中水的高度)

  3.练一练第4小题。怎么钢管的体积?

  1)钢管体积=大圆柱体积-小圆柱体积

  2)钢管体积=钢管环形底面积高

【《圆柱的体积》教案】相关文章:

《圆柱的体积》教案01-27

《圆柱的体积》教案15篇04-01

《圆柱的体积》教案四篇02-14

《圆柱的体积》说课稿01-16

圆柱的体积说课稿02-16

《圆柱的体积》教案范文7篇02-13

《圆柱的体积》教案15篇【精华】08-21

《圆柱的体积》教学反思10-26

圆柱的体积教学反思02-18