- 《组合图形的面积》教案 推荐度:
- 相关推荐
组合图形的面积教案
作为一名辛苦耕耘的教育工作者,总归要编写教案,教案是教学活动的依据,有着重要的地位。教案应该怎么写呢?下面是小编帮大家整理的组合图形的面积教案,欢迎阅读,希望大家能够喜欢。
组合图形的面积
设计理念:本节课的中心与着力点是“方法”的体会与感悟,计算面积不是刚学,不是重点,但不能忽视,可以加大力度;还要指导学生能根据各种组合图形的条件,有效地选择方法。在整个探索过程中,相信学生,鼓励学生,给予学生充足的独立思考、交流讨论的时间。
本节课还得预设学生在学习过程中可能出现哪些问题,做好提前准备,这样到课堂上才能真正做到“以不变应万变”。
教学目标:
知识目标:
1、在自主探索的活动中,理解组合图形面积的计算方法。
2、能根据各种组合图形的条件,灵活有效的选择计算方法并进行正确的解答。
能力目标:
1、能运用所学的知识,解决生活中组合图形的实际问题。
2、通过图形的组合和分解培养分析问题、解决问题的能力及动手创新的意识学会把复杂问题转化为简单问题,渗透转化思想。
情感与价值观目标:
1、通过动手操作,给学生以美的享受,并能展示自我,张扬个性。
2、让孩子体验到成功的喜悦,培养了学生战胜困难的决心和勇气,团结友爱的美好情感。
教学重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个简单图形所需的条件。
教学难点:选择有效的计算方法解决实际问题。
教学过程:一、复习旧知,引入新课
1、师:我们会求哪些平面图形的面积了?请回忆下面积计算公式。
2、看黑板上一些正六边形(六边相等、六角相等),你有它们的面积计算公式吗?那要求它的面积,怎么办呢?(转化成我们学过的图形)
[设计意图:让学生初步体会到学过的面积计算方法应用的广泛性,渗透转化思想,培养空间观念。]
2、探索组合图形面积计算方法
1、割
那你能想办法用学过的方法来求正六边形的面积吗?请上来画一画说一说。
这些同学的方法可以归结为一个字:割。就是把一个没学过的图形割成学过的图形,然后利用面积公式算出每一块面积,再求出整个图形的面积。且方法千变万化,只要你有目标,就一定能成功。
[设计意思:拓展思维,一题多解,感受探索的乐趣,培养学生学习平面图形的兴趣。]
2、补、大面积-小面积
出示一个组合图形
(1)师:请同学们选择一种方法计算这个组合图形的面积。(生独立完成)
师:谁来说说你是用哪种方法计算的。
生介绍,师根据学生的介绍演示不同的方法。
师:这几种方法你们最喜欢哪一种呢?
师:为什么?(引导学生选择分得最少的,计算又简洁的方法)
(2)这儿又有一种新方法,没有把组合图形分割,而是补上一块。(板演:补),算出补后的大面积,减去补上的那部分面积,便可得出原来图形的面积。(板演:大面积-小面积)
3、小结求组合图形面积常用的方法
割、补、大面积-小面积。
4、小试牛刀
课后第一题。
请说说你用了什么方法。你更喜欢哪种方法?
5、挑战
(1)独立思考
(2)讨论
(3)移、拼的方法
[设计意图:从易到难,层层深入,引出求组合图形面积的常用方法]
3、回顾本节课所学,你有什么收获吗?在求组合图形面积时,你有什么要提醒大家的吗?
[设计意图:锻炼学生总结概括能力,口语表达能力得到发展。]
4、练习:课后2、3
板书:
长方形面积=长×宽割
正方形面积=边长×边长补
平行四边形面积=底×高拼
三角形面积=底×高÷2写大面积-小面积
梯形面积=(上底+下底)×高÷2
【组合图形的面积教案】相关文章:
《组合图形的面积》教案12-25
数学组合图形的面积教学反思02-19
五年级《组合图形面积》说课稿11-27
中班教案《分割与组合图形》反思12-31
《比较图形的面积》教学反思02-28
《比较图形的面积》教学反思6篇03-19
《比较图形的面积》教学反思(6篇)03-27
圆的面积教案03-12
梯形面积教案11-27