《比例的意义》教案

时间:2024-07-07 17:16:03 教案 我要投稿

《比例的意义》教案

  作为一名教职工,通常会被要求编写教案,教案有利于教学水平的提高,有助于教研活动的开展。快来参考教案是怎么写的吧!下面是小编为大家收集的《比例的意义》教案,仅供参考,大家一起来看看吧。

《比例的意义》教案

《比例的意义》教案1

  教学目标:

  1、学生根据具体情境教学,结合实例认识正比例,理解正比例的意义,正比例的意义教学设计。

  2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

  3、结合丰富的事例,认识正比例,体会数学源于生活,进一步提高学习兴趣。教学重点:

  结合丰富的事例,认识正比例。能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教学难点:

  能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教学关键:

  理解成正比例的两个量的意义。

  教学过程:

  一、复习准备:

  口答

  1、已知路程和时间,怎样求速度?

  2、已知总价和数量,怎样求单价?

  3、已知工作总量和工作时间,怎样求工作效率?

  二、数学活动。在学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。

  活动一:在情境中感受两种相关联的量之间的变化规律。

  (一)情境一:

  课件出示:

  1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

  2、填完表以后思考讨论,教案《正比例的意义教学设计》。正方形的面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?说说从数据中发现了什么?

  3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是一定的。

  特点是:

  ①两种相关联的量

  ②一种量扩大(或缩小)另一种量也扩大(或缩小)

  ③两种量中相对应的两个量的比的比值是一定的。

  4、正方形的面积与边长的比是边长,是一个不确定的值。

  学生在小组内练说发现的规律,初步感知正比例的判定。

  (二)情境二:

  1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

  2、请把下表填写完整。3、从表中你发现了什么规律?说说你发现的规律:路程与时间的比值(速度)相同。

  (三)情境三:1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

  2、把表填写完整。3、从表中发现了什么规律?应付的钱数与质量的比值(也就是单价)相同。

  3、说说以上两个例子有什么共同的特点。

  小结:路程随时间的变化而变化,路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,应付的钱数与质量的比值相同。

  4、正比例关系:观察思考成正比例的量有什么特征?

  小结:

  (1)两种相关联的'量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是我们今天要学习的内容。

  追问:判断两种相关联的量成不成正比例的关键是什么?(比值是不是一定)

  (2)字母表达关系式。

  如果字母y和x分别表示两种相关联的量,用k表示它们的比值,正比例关系怎样用字母表示出来?=k(一定)

  (3)质疑。

  师:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?

  三、巩固练习

  (一)想一想:请生用自己的语言说一说。与同桌交流,再集体汇报

  1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

  2、根据小明和爸爸的年龄变化情况

  把表填写完整。父子的年龄成正比例吗?为什么?

  (二):练一练。教师适度点拨引导,强调正比例关系判断的关键。先自己独立完成,然后集体订正,说理由。

  1、判断下面各题中的两个量,是否成正比例,并说明理由。

  (1)每袋大米的质量一定,大米的总质量和袋数。

  (2)一个人的身高和年龄。

  (3)宽不变,长方形的周长与长。

  2、根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。

  3、买邮票的枚数与应付的钱数成正比例吗?填写表格。先填写表格,再说明理由

  4、画一画,你会有新的发现。

  彩带每米4元,购买2米、3米…彩带分别需要多少钱?

  ①填一填:(长度:米,价格:元)

  ②画一画,把上表中长度和价钱对应的点描在坐标纸上,再顺次连接起来。看发现了什么?

  板书:

  正比例的意义

  ①两种相关联的量

  ②一种量扩大(或缩小)另一种量也扩大(或缩小)

  ③两种量中相对应的两个量的比的比值是一定的

  路程÷时间=速度(一定)总价÷数量=单价(一定)

  =k(一定)

《比例的意义》教案2

  教学目标:

  1、理解比例的意义,认识比例各部分名称,能通过观察、猜想、验证等方法得出分数的基本性质。

  2、能根据比例的意义和基本性质,正确判断两个比能否组成比例。

  3、培养学生猜想与验证、观察与概括的能力。

  4、让学生经经历探究的过程,体验成功的快乐,收获数学学习的兴趣和信心。

  教学重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。

  教学难点:自主探究比例的基本性质。

  教学准备:投影片、练习纸

  三案设计:

  学案

  一、自学质疑

  [探究任务一] 比例的意义

  1、投影出示几组比,让学生写出各组的比值,

  二、比例的基本性质

  教案

  一、回顾旧知、孕伏新知:

  1、谈话:同学们,我们已经学过了比的许多知识,说说你已经知道了比的哪些知识?

  (生答:比的意义、各部分名称、基本性质等。)

  还记得怎样求比值吗?能很快算出下面每组中两个比的比值吗?

  2、 师板书题目:

  (1)4:5 20:25 (2)0.6:0.3 1.8:0.9

  (3)1/4: 5/8 3:7.5 (4)3:8 9:27

  [评析:开门见山,从学生已有的知识经验入手,方便快捷,循序渐进,为新课做好准备。因为这些题目还要用到,所以不惜费时板书——有效的呈现方式]

  二、丝丝入扣,深挖比例的意义

  (一)认识意义

  1、 指名口答每组中两个比的比值,在比例下方写上比值。

  师问:你们有什么发现吗?(三组比值相等,一组不等)

  2、是啊,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:4:5=20:25

  师:最后一组能用等号连接吗?为什么?

  数学中规定,像这样的一些式子就叫做比例,今天这节课我们就一起来研究比例(板书:比例)

  [评析:通过口算求比值,不经意间学生就有了发现,有三组式子比值相等,一组不等,如行云流水般引出比例。有效的课堂教学,就需要像这样做好新旧知识的完美衔接。]

  3、同学们想研究比例的哪些内容呢?

  (生答:想研究比例的意义,学比例有什么用?比例有什么特点……)

  4、那好,我们就先来研究比例的意义,到底什么是比例呢?观察黑板上这些式子,你能说出什么叫比例吗?

  (根据学生的回答,教师抓住关键点板书:两个比 比值相等)

  同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。

  板演:表示两个比相等的式子叫做比例。

  学生议一议,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

  5、质疑:有三个比,他们的比值相等,能组成比例吗?

  [评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生议一议,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。让学生像一个数学家一样真正经历知识探索和形成的全过程,无时无刻不享受成功的.快乐!]

  (二)练习

  1、投影出示例1,根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。

  (1)学生独立完成。

  (2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。

  2、完成练习纸第1题。

  一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。

  (1)分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

  (2)分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?

  [评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。这一环节,一学生对于“为什么”设计到了正反比例的知识,教师也不失时机予以评价,不但使该生兴致勃勃,也引得其他学生投来艳羡的目光,生成地精彩!]

  3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?

  (引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)

  4、认识比例各部分的名称

  (1)板书出示: 4 : 5

  前项 后项

  (2)板书出示:4 : 5 = 20 : 25

  (3)如果把比例写成分数的形式,你能指出它的内、外项吗?

  课件出示:4/5=20/25

  [评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]

  5、小结、过渡:

  刚才我们已经研究了比例的意义及其各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,大家有兴趣吗?

  三、探究比例的基本性质

  1、投影出示:

  你能运用3、5、10、6这四个数,组成几个等式吗?(等号两边各两个数)

  2、 独立思考,并在作业本上写一写。

  学生组成的等式可能有:10÷5=6÷3

  或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……

  根据学生回答,师相机引导并板书: 3×10=5×6 3:5=6:10

  3:6=5:10

  5:3=10:6

  6: 3=10:5……

  3、 引导发现规律

  (1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)

  乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不一样,因为比值各不相同)

  (2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?

  (3)学生先独立思考,再小组交流,探究规律。

  (板书:两个外项的积等于两个内项的积。)

  [评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]

  4、验证猜想:

  师:这是你的猜想,有了猜想还必须验证。

  (1)请看黑板上这几个比例的内项的积与外项的积是不是相等?(学生进行验证,纷纷表示内项积等于外项积)

  (2)学生任意写一个比例并验证。师巡视指导。

  师:有一位同学也写了一个比例,他认为这个比例的内项积与外项积是不相等的,大家看看是什么原因?

  板书:1/2 ∶1/8 = 2∶ 8

  众生沉思片刻,纷纷发现等式不成立。

  生:1/2∶1/8 = 4,而 2∶8 =1/4,这两个比不能组成比例。

  师:看来刚才发现的规律前要加一个条件——在比例里(板书),这个规律叫做比例的基本性质。

  [评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]

  5、思考4/5=20/25是那些数的乘积相等。课件显示:交叉相乘。

  6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)

  [及时总结评价,不但可以帮助学生理清知识脉络,而且可以让他们感受创造的快乐,树立学习的信心。尤其是教师的评价:科学家也是这样研究问题的!更给了学生无上的荣耀!]

  四、反馈提升

  完成练习纸2、3、4

  附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。

  14 :21 和 6 :9 1.4 :2 和 5 :10

  让学生明确可以通过比例的意义和基本性质两个途径判断两个比能否组成比例。

  3、判断下面哪一个比能与 1/5:4组成比例。

  ①5:4 ②20:1

  ③1:20 ④5:1/4

  4、在( )里填上合适的数。

  ①1.5:3=( ):4

  12:( )=( ):5

  [评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,第4题中第②题属于开放题,答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]

  五、课后留白

  同一时间、同一地点,人高1.5米,影长2米;树高3米,影长4米。

  (1)人高和影长的比是( )

  树高和影长的比是( )

  (2)人高和树高的比是( )

  人影长和树影长的比是( )

  你有什么发现?

  为什么同一时间、同一地点两个不同物体高度与其影长的比可以组成比例?请大家课后查找有关资料。

  [设计意图:数学服务于生活,在生活中能更好地检验数学学习的成色!“带着问题离开教室”是新课程的理念,没有完美的课堂,缺憾不失为一种美!]

  六、全课总结:这节课你有什么收获?

  (最后的机会仍然给学生,学生通过清晰的板书总结的很到位)

《比例的意义》教案3

  教学目标:

  (1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。

  (2)认识比例的各部分名称。

  (3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。

  教学重点难点:

  理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。

  教具学具准备:

  幻灯片、学习卡。

  教学过程:

  一、创设情景,引入新课。

  出示三幅场景图。

  (1)图上描述的是什么情景?这几幅图都与什么有关?

  (2)这三面国旗有什么相同和不同的地方?(形状相同,大小不同)

  (3)你们有见过这样的国旗吗?或者这样的?

  我们的国旗,不论大小,之所以形状相同,是因为它们都是按照一定的比例来制作的,从今天开始,我们将要学习有关比例的知识。板书课题

  二、自主探究,明确意义

  1、提问:你们知道每一幅图中国旗的长和宽分别是多少吗?

  2、谈话:在制作国旗的过程中存在着有趣的比。请同学们拿出第一张自主学习卡,算一算这三幅国旗的长、宽之比,求出比值,并同桌互相说一说你有什么发现?

  3、学生汇报。

  4、我们以操场上和教室里的国旗为例,2.4:1.6= ,60:40= ,这两个比的比值相等,中间可以用等号连接起来,写成2.4:1.6=60:40,因为比还可以写成分数形式,所以还可以写成=。

  像这样表示两个比相等的式子叫做比例。(板书)

  5、在上图的三面国旗的尺寸中,还有哪些比可以组成比例?

  6、深入探讨:

  (1)比例有几个比组成?

  (2)是不是任意两个比都能组成比例?

  (3)判断两个比能不能组成比例,关键要看什么?

  7、完成“做一做”。

  三、探究比例的基本性质。

  1、学习比例各部分的名称。

  教师:我们知道组成比的两个数分别叫前项和后项,组成比例的四个数也有自己的名字,你们知道它们分别叫什么吗?(课件出示)

  (1)指名读一读有关知识。

  (2)谁来介绍一下在2.4:1.6=60:40中,内项和外项分别是谁?

  随着学生的回答教师出示:

  2.4: 1.6 = 60: 40 (外项)(内项)

  └-内项-┘ =

  └------外项-------┘ (内项)(外项)

  (3)如果把比例写成分数形式,你能找出它的内项和外项吗?

  (4)任意选择一个比例式,标出内项、外项,同桌两人互相检查。

  2、研究比例的基本性质。

  (1)活动探究,总结性质。

  谈话:比有基本性质,比例表示两个比相等的式子,也有它特有的性质,请同学们拿出2号自主学习卡,小组讨论一下,写一写,算一算,解决以下问题。

  ①计算下面比例中两个外项的积和两个内项的积,比较一下,你能发现什么?

  2.4:1.6=60:40 =

  ②你能举一个例子,验证你的发现吗?

  ③你能得出什么结论?

  ④你能用字母表示这个性质吗?

  (2)运用性质。

  ①提问:学了比例的基本性质,你觉得运用它能解决什么问题?

  ②运用比例的基本性质,判断下面哪组中的两个比可以组成比例。

  (1) 6:3和8:5 (2) 0.2:2.5 和 4:50

  (3) :和 : (4) 1.2: 和 :5

  四、巩固练习。

  1、填空

  (1)在a:7=9:b中,( )是内项,( )是外项,a×b=( )。

  (2)一个比例的两个内项分别是3和8,则两个外项的积是( ),两个外项可能是( )和( )。

  (3)在一个比例里,两个外项互为倒数,那么两个内项的积是( ),如果一个外项是 ,另一个外项是( )。

  (4)在比例里,两个内项的积是18,其中一个外项是2,另一个外项是( )。

  (5)如果5a=3b,那么, = , = 。

  2、判断。

  (1)在比例中,两个外项的积减去两个内项的积,差是0。( )

  (2)18:30和3:5可以组成比例。( )

  (3)如果4X=3Y,(X和Y均不为0),那么4:X=3:Y。( )

  (4)因为3×10=5×6,所以3:5=10:6。( )

  3、把下面的等式改写成比例:(能写几个写几个)

  16 × 3 = 4 × 12

  四、总结归纳

  1、这节课我们学习了什么知识?你有什么收获?

  2、判断两个比能不能组成比例,有几种方法?

  比例在生活中有着广泛的应用,比如:警察可以根据脚印的长短判断罪犯的大致身高,根据影子的长度可以算出一棵大树的高度等,都与比例有关,我们只要认真学好比例,就一定能帮助我们了解其中的奥秘。

  板书设计

  比例的意义和基本性质

  表示两个比相等的式子叫做比例。

  2.4: 1.6 = 60: 40 (外项)(内项)

  └-内项-┘ 或 =

  └------外项-------┘ (外项)(内项)

  在比例里,两个外项的积等于两个内项的积。

  A:B=C → AD=BC

  《比例的意义》教案15

  教学内容:教科书第19—21页正比例的意义,练习六的1—3题。

  教学目的:

  1.使学生理解正比例的意义,能够根据正比例的意义判断两种量是不是成正比例。

  2.初步培养学生用事物相互联系和发展变化的观点来分析问题。

  3.初步渗透函数思想。

  教具准备:投影仪、投影片、小黑板。

  教学过程():

  一、复习

  用,投影片逐一出示下面的题目,让学生回答。

  1.已知路程和时间,怎样求速度?板书: =速度

  2.已知总价和数量,怎样求单价?板书: =单价

  3.己知工作总量和工作时间,怎样求工作效率?板书:

  =工作效率

  4,已知总产量和公顷数,怎样求公顷产量?板书: =公顷产量

  二、导人新课

  教师:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系中的一些特征,首先来研究这些数量之间的正比例关系。(板书课题:正比例的意义)

  三、新课

  1.教学例1。

  用小黑板出示例1:一列火车行驶的时间和所行的路程如下表:

  提问:

  “谁来讲讲例1的意思?”(火车1小时行驶60千米,2小时行驶120千米……)

  “表中有哪几种量?”

  “当时间是1小时,路程是多少?当时间是2小时,路程又是多少?……”

  “这说明时间这种量变化了,路程这种量怎么样了?”(也变化了。)

  教师说明:像这样,一种量变化,另一种量也随着变化,我们就说这两种量是两种相关联的量。(板书:两种相关联的量)“时间和路程是两种相关联的量,路程是怎样随着时间变化而变化的呢?”

  教师指着表格:我们从左往右观察(边讲边在表格上画箭头),时间扩大2倍,对应的路程也扩大2倍3时间扩大3倍,对应的路程也扩大3倍……从右往左观察(边讲边在表格上画反方向的箭头),时间缩小8倍,对应的路程也缩小8倍;时间缩小7倍,对应的路程也缩小7倍……时间缩小2倍,对应的路程也缩小2倍。通过观察,我们发现路程是随着时间的变化而变化的。时间扩大路程也扩大,时间缩小路程也缩小。它们扩大、缩小的规律是怎么样的呢?

  让每一小组(8个小组)的同学选一组相对应的数据,计算出它们的比值。教师板书出来: =60. =60, =60…… 让学生双察这些比和它们的比值,看有什么规律。教师板书:相对应的两个数的比值(也就是商)一定。

  然后教师指着 =60, =60 = 60……问:“比值60,实际上是火车的什么:你能将这些式子所表示的意义写成一个关系式吗?板书: =速度(—定)

  教师小结:通过刚才的观察和分析.我们知道路程和时间是两种什么样的量?(两种相关联的量。)路程和时间这两种量的变化规律是什么呢?(路程和时间的`比的比值(速度)总是一定的。)

  2.教学例2。

  出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。

  让学生观察上表,并回答下面的问题:

  (1)表中有哪两种量?

  (2)米数扩大,总价怎样?米数缩小,总价怎样?

  (3)相对应的总价和米数的比各是多少?比值是多少?

  当学生回答完第二个问题后,教师板书: =3.1, =3.1, =3.1……

  然后进一步问:

  “这个比值实际上是什么?你能用一个关系式表.示它们的关系吗?”板书: =单价(一定)

  教师小结:通过刚才的思考和分析,我们知道总价和米数也是两种相关联的量,总价是随着米数的变化而变化的,米数扩大,总价也随着扩大;米数缩小,总价也随着缩小。它们扩大、缩小的规律是:总价和米数的比的比值总是一定的。

  3.抽象概括正比例的意义。

  教师:请同学们比较一下刚才这两个例题,回答下面的问题;

  (1)都有几种量?

  (2)这两种量有没有关系?

  (3)这两种量的比值都是怎样的?

  教师小结:通过比较,我们看出上面两个例题,有一些共同特点:都有两种相关联的量,一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的比值(也就是商)一定。像这样的两种量我们就把它们叫做成正比例的量,它们的关系叫做正比例关系。(板书出教科书上第’20页的倒数第二段。)

  接着指着例1的表格说明:在例1中,路程随着时间的变化而变化,它们的比值(速度)保持一定,所以路程和时间是成正比例的量。随后让学生想一想:在例2中,有哪两种相关联的量:它们是不是成正比例的量?为什么?

  最后教师提出:如果我们用字母X,y表示两种相关联的量.用字母K表示它们的比值,你能将正比例关系用字母表示出来吗?

  学生回答后,教师板书: =K(一定)

  4,教学例3。

  出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?

  教师引导:

  “面粉的总重量和袋数是不是相关联的量?”·

  “面粉的总重量和袋数有什么关系?它们的比的比值是什么?这个比值是否—定?”(板书: =每袋面粉的重量(一定))

  “已知每袋面粉的重量一定,就是面粉的总重量和袋数的比的比值是一定的,所以面粉的总重量和袋数成正比例。”

  5.巩固练习。

  让学生试做第21页“做一做”中的题目。其中(3)要求学生说明这个比值所表示的意义,学生说成是生产效率和每天生产的吨数都可以。

  四、课堂练习

  完成练习六的第1—3题。

  第1题,做题前,让学生想一想:成正比例的量要满足哪几个条件?然后让学生算出各表中两种相对应的数的比的比值,看看它们的比值是否相等。如果比值相等就可以列出关系式进行判断。第(3)小题,要问一问学生为什么正方形的边长和面积不成比例。(因为相对应的正方形的边长和面积的比的比值不相等。)

  第2题,先让学生自己判断,再订正。其中(1)一(5)、(7)、(8)成正比例,(6)和(9)不成正比例。

  第3题,可先让同桌的同学互相举例,然后再指名举出成正比例的例子。

《比例的意义》教案4

  【学习目标】

  1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。

  2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系。

  3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用。

  【学习重点】

  理解反比例函数的意义,确定反比例函数的`解析式。

  【学习难点】

  反比例函数的解析式的确定。

  【学法指导】

  自主、合作、探究

  教学互动设计

  【自主学习,基础过关】

  一、自主学习:

  (一)复习巩固

  1.在一个变化的过程中,如果有两个变量x和y,当x在其取值范围内任意取一个值时,y,则称x为,y叫x的.

  2.一次函数的解析式是:;当时,称为正比例函数.

  3.一条直线经过点(2,3)、(4,7),求该直线的解析式.

  以上这种求函数解析式的方法叫:

  (二)自主探究

  提出问题:下列问题中,变量间的对应关?可用怎样的函数关系式表示?

 

  1.如图K-3-8,已知反比例函数的图象经过三个点A(-4,-3),B(2m,y1),C(6m,y2),其中m>0.

  (1)当y1-y2=4时,求m的值;

  (2)过点B,C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若△PBD的面积是8,请写出点P的坐标(不需要写解答过程).

  26.1.2反比例函数的图象和性质:课文练习

  1.下面关于反比例函数y=-3x与y=3x的说法中,不正确的是(  )

  A.其中一个函数的图象可由另一个函数的图象沿x轴或y轴翻折“复印”得到[

  B.它们的图象都是轴对称图形

  C.它们的图象都是中心对称图形

  D.当x>0时,两个函数的函数值都随自变量的增大而增大

《比例的意义》教案5

  教学内容:教材第30~31页比例的意义和基本性质,练习六第1~5题。

  教学要求:使学生理解比例的意义和基本性质,能用比例的意义或性质判断两个比成不成比例;通过教学培养学生初步的综合、概括能力。

  教学重点:理解比例的意义和基本性质。

  教学难点:用比例的意义或性质判断两个比成不成比例。

  教学理念:以学生为主体,把较多的时间和空间留给学生探索、交流、概括。

  教具、学具准备:小黑板,教学课件

  教学步骤

  一、复习铺垫

  l.什么叫做两个数的比?请你说出两个比。(教师板书)

  2.什么是比的比值?上面两个比的比值是多少?

  3.引入新课。

  我们已经认识了比,知道怎样求比值。今天就根据比和比值来学习比例,并且认识比例的基本性质。(板书课题)

  二、导入新课

  1.教学比例的意义。

  让学生算出下面各比的比值,再比较每组里两个比的比值有什么关系。(指名板演)

  (1) 3 :5 24 :40 (2) :7.5 :3

  追问:比值相等,说明每组里两个比怎样?

  指出:表示两个比相等的式子叫做比例。

  说一说,上面两个等式表示的是怎样的式子?

  2.下面两个比之间的哪些○里能填“=”,为什么?

  1 :2○3 :6 0.5 :0.2○5 :2

  1.5 :3○15 :3:2○:1

  提问:填了等号后的式子是什么? 1.5 :3和15 :3为什么不能组成比例?要判断两个比能不能组成比例,可以看它们的'什么?指出:要判断两个比是不是相等,可以看比值是不是相等;也可以把两个比化简后看是不是相同的两个比。

  3.教学例1。

  出示例1,让学生先写出两次买练习本的钱数和本数的比。提问:怎样判断这两个比能不能组成比例?让学生判断并写出比例。提问:能不能组成比例?(板书比例式)为什么?强调:只有两个比值相等的比才能组成比例。

  让学生根据比例的意义,在( )里填上适当的数。

  3 :6=5 :( ) 0.8 :( )=1 :

  4.教学比例的基本性质。

  向学生说明比例各部分的名称。

  让学生看开始组成的两个比例,说一说其中的内项和外项。让学生计算上面比例里两个外项的积和两个内项的积,并要求观察,从中发现什么。

  5.判断能否组成比例。

  出示“3.6 :1.8和0.5 :0.25”。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。提问:2.6 :1.8和0.5 :0.25能组成比例吗?

  强调指出:根据比例的基本性质,也可以判断两个比能不能组成比例,判断时可以先把两个比看成是比例。如果两个外项的积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。

  如果学生有困难,启发用比值相等的方法推算。填写以后,学生回答:为什么填这个数?

  让学生口答结果。提问:从上面的计算里,你发现了什么,出示比例的基本性质,并让学生说一说。如果把比例写成分数形式,请你说一说外项和内项。提问:在这个比例里交叉相乘的积有什么关系?追问:为什么交叉相乘的积相等?

  三、巩固练习

  1. 提问:什么叫做比?什么叫做比例?比和比例有什么不同的地方?怎样判断两个比能不能组成比例?

  2. 完成“练一练”。

  指名4人板演.集体订正.说说是怎样判断的?

  3.做练习六第1题。

  让学生做在练习本上。如果能组成比例就再写出比例。提问练习情况并板书,让学生说明“为什么”。

  4.做练习六第2题。

  让学生判断,在练习本上写出来。提问:哪一个比和:4组成比例?为什么,(比值相等,或化简后两个比相同)

  5.完成练习六第3题。

  学生先观察、计算,然后口答,说明理由。

  四、全课小结

  这堂课学习了什么内容?什么叫做比例?比例的基本性质是什么?可以怎样判断两个比能不能组成比例?

  五、布置作业

  练习六第4、5题。

《比例的意义》教案6

  教学目标

  1.使学生理解,能够初步判断两种相关联的量是否成比例,成什么比例.

  2.通过观察、比较、归纳,提高学生综合概括推理的能力.

  3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.

  教学重点

  理解正反比例的意义,掌握正反比例的变化的规律.

  教学难点

  理解正反比例的意义,掌握正反比例的变化的规律.

  教学过程

  一、导入新课

  (一)昨天老师买了一些苹果,吃了一部分,你能想到什么?

  (二)教师提问

  1.你为什么马上能想到还剩多少呢?

  2.是不是因为吃了的和剩下的是两种相关联的量?

  教师板书:两种相关联的量

  (三)教师谈话

  在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和

  数量也是两种相关联的量.你还能举出一些例子吗?

  二、新授教学

  (一)成正比例的量

  例1.一列火车行驶的时间和所行的路程如下表:

时间(时)




1




2




3




4




5




6




7




8




……




路程(千米)




90




180




270




360




450




540




630




720




……




  1.写出路程和时间的比并计算比值.

  (1)

  (2) 2表示什么?180呢?比值呢?

  (3) 这个比值表示什么意义?

  (4) 360比5可以吗?为什么?

  2.思考

  (1)180千米对应的时间是多少?4小时对应的路程又是多少?

  (2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?

  教师板书:时间、路程、速度

  (3)速度是怎样得到的?

  教师板书:

  (4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?

  (5)在这组题中谁与谁是两种相关联的.量?它们是如何相关联的?举例说明变化规律.

  3.小结:有什么规律?

  教师板书:商不变

  (二)成反比例的量

  1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.

工效(个)




10




20




30




40




50




60




……
时间(时)

60




30




20




15




12




10




……




  2.教师提问

  (1)计算工效和时间的乘积.

  (2)这一组题中涉及了几种量?谁与谁是相关联的量?

  (3)请你举例说明谁与谁是相对应的两个数?

  (4)在这一组题中两种相关联的量是如何变化的?(举例说明)

  3.小结:有什么规律?(板书:积不变)

  (三)不成比例的量

  1.出示表格

运走的吨数




10




20




30




40




剩下的吨数




90




80




70




60




总吨数(和不变)




100




100




100




100




  2.教师提问

  (1)总吨数是怎样得到的?

  (2)谁与谁是两种相关联的量?

  (3)它们又是怎样变化的?变化的规律是什么?

  运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变

  (四)结合三组题观察、讨论、总结变化规律.

  讨论题:

  1.这三组题每组题中谁与谁是两种相关联的量?

  2.在变化过程当中,它们的异同点是什么?

  共同点:都有两种相关联的量,一种量变化,另一量也随着变化

  不同点:第一组商不变,第二组积不变,第三组和不变.

  总结:

  3.分别概括

  4.强调第三组题中两种相关联的量叫做不成比例

  5.教师提问

  (1)两种量成正比例必须具备什么条件?

  (2)两种量成反比例必须具备什么条件?

  (五)字母关系式

  三、巩固练习

  判断下面各题是否成比例?成什么比例?

  1.一种圆珠笔

总价(元)




1。2




2。4




3。6




4。8




6




7。2




支数




1




2




3




4




5




6




单价(元)




1




2




4




5




10




支数




100




50




25




20




10




  (1)表中有哪两种相关联的量?

  (2)说出几组这两种量中相对应的两个数的比

  (3)每组等式说明了什么?

  (4)两种相关的量是否成比例?成什么比例?

  2.当速度一定,时间路程成什么比例?

  当时间一定,路程和速度成什么比例?

  当路程一定,速度和时间成什么比例?

  3.长方形的面一定,长和宽

  4.修一条路,已修的米数和剩下的米数.

  四、课堂总结

  今天这节课我们初步了解了正反比例的意义,并能运用正反比例的意义判断一些简单的问题.通过正反比例意义的对比,使我们进一步认识到,要判断两种相关联的量是成正比例关系还是反比例的关系,要抓住两种相关联的量的变化规律,这是本质.

  五、课后作业

  (一)判断下面每题中的两种量是不是成正比例,并说明理由.

  1.苹果的单价一定,购买苹果的数量和总价.

  2.轮船行驶的速度一定,行驶的路程和时间.

  3.每小时织布米数一定,织布总米数和时间.

  4.长方形的宽一定,它的面积和长.

  (二)判断下面每题中的两种量是不是成反比例,并说明理由.

  1.煤的总量一定,每天的烧煤量和能够烧的天数.

  2.种子的总量一定,每公顷的播种量和播种的公顷数.

  3.李叔叔从家到工厂,骑自行车的速度和所需时间.

  4.华容做12道数学题,做完的题和没有做的题.

  六、板书设计

《比例的意义》教案7

  教学内容:教科书第22—24页反比例的意义,练习六的第4—6题。

  教学目的:

  1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。

  2.使学生进一步认识事物之间的相互联系和发展变化规律。

  3.初步渗透函数思想。

  教具准备:投影仪、投影片、小黑板。

  教学过程():

  一、复习

  1.让学生说说什么是成正比例的量:

  2.用投影片出示下面的题:

  (1)下面各题中哪两种量成正比例?为什么?

  ①笔记本单价一定,数量和总价:

  ⑨汽车行驶速度一定.行驶的路程和时间。

  ②工作效率一定.’工作时间和工作总量。

  ①一袋大米的重量一定.吃了的和剩下的。

  (2)说出每小时加工零件数、加工时间和加工零件总数三者间的数量关系。在什么条件下,其中两种量成正比例?

  二、导入新课

  教师:如果加工零件总数一定。每小时加工数和加工时间会成什么样的变化.关系怎样?就是我们这节课要学习的内容。

  三、新课

  1.教学例4。

  出示例4;丰机械厂加工一批机器零件。每小时加工的数量和所需的加工时间如下表。

  让学生观察这个表,然后每四人一组讨论下面的问题:

  (1)表中有哪两种量?

  (2)所需的加工时间怎样随着每小时加工的个数变化?

  (3)每两个相对应的数的乘积各是多少?

  学生分组讨论后集中发言。然后每个小组选代表回答上面的'问题。随着学生的回答,教师板书如下:每小时加工数加工时间

  10 × 60 =600。

  30 × 20 =600。

  40 × 15 =600,

  “这个积600。实际上是什么?”在“加工时间”后面板书:零件总数

  “积一定,就说明零件总数怎样?”在零件总数后面板书:(一定)

  “每小时加工数、加工时间和零件总数这三种量有什么关系呢?”

  学生回答后,教师小结:通过刚才的观察分析.我门可以看出。表中每小时加工零件数和所需的加工时间是两种相关联的量。所需的加工时间是随着每小时加工数量的变化而变化的,每小时加工的数量扩大。所需的加工时间反而缩小3每小时加工的数量缩小,所需的加工的时间反而扩大。它们扩大、缩小的规律是:每小时加工的零件的数量和所需的加工时间的积都等于600,即总是一定的:我们把这种关系写成式子就是:每小时加工数×加工的时间=零件总数(一定)。

  2.教学例5。

  用小黑板出示例5用600页纸装订成同样的练习本,每本的页数和装订的本数有什么关系呢?请你先填写下表。

  (1)理解题意,填写装订本数。

  “谁能说说表中第一栏数据的意思?”(用600页纸装订练习本,如果每本练习本15页,可以装订40本。)

  “这40本是怎么计算出来的?”(用600÷15)

  “如果每本练习本是20页,你能计算出可以装订多少这样的练习本吗?如果每本是25页呢?……请你把计算出来的本数填在教科书第23页的表中。”教师把学生报出的数据填在黑板上的表中。

  (2)观察分析表中两种量的变化规律。

  让学生观察上表,回答下面的问题:“表中有哪两种量?”(板书:每本的页数装订的本数)

  “装订的本数是怎样随着每本的页数变化的?”随着学生的回答,板书如下:每本的页数 装订的本数

  15 40

  20 30

  25 24

  一’然后让学生判断下面每题中的两种量成不成比例,是成正比例还是成反比例。

  1,单价一定.数量和总价。

  2,路程一定,速度和时间。。

  3,正方形的边长和它的面积。

  1.时间一定,工效和工作总量。

  二、导入新课

  教师:我们在前两节课分别学习了成正比例的量和成反比例的量。初步学会判断

  两种量是不是成正比例或反比例的关系,发现有些同学判断时还不够准确。这节课我

  们要通过比较弄清成正比例的量和成反比例的量有什么相同点和不同点。

  板书课题:正比例和反比例的比较

  三、新课

  1.教学例7。

  出示例7的两个表:

  表1 表2

  让学生观察上面的两个表,然后根据两个表所提的问题,分别在教科书上填空。订正时。指名说出自己是怎样填的,教师板书:

  在表l中: 在表2中:

  相关联的量是路程和时间. 路程随着相关联的量是速度 路程随 时间变化,速度是 和时间,速度随着时间变化

  一定。因此,路程和时间 ,路程是一定的。因此,速

  成正比例关系。 度和时间成反比例关系

  然后提问:

  (1)从表1,你怎样发现速度是一定的?你根据什么判断路程和时间成正比例/

  (2)从表2,你怎样发现路程是一定的?你根据什么判断速度和时间成反比例?

  教师:路程、速度和时间这三个量中每两个量之间有什么样的比例关系?

  板书:速度×时间=路程

  =速度 =速度

  教师:当速度一·定时,路程和时间成什么比例关系?

  教师:当路程一定时,速度和时间成什么比例关系?

  教师:当时间一定时。路程和速度成什么比例关系?

  2.比较正比例和反比例关系。

  教师:结合上面两个例子,比较——下正比例关系和反比例关系,你能写出它们的相同点和不同点吗?试试看。组织讨论,教师归纳并板书:

  四、巩固练习

  1.做教科书第28页“做一做”中的题目。

  让学生自己填,并说一说为什么。

  2.做练习七的第1—2题。

  教师巡视,个别辅导,最后订正。

  五、小结

  教师:请同学们说说正比例和反比例关系有什么相同点和不同点?

《比例的意义》教案8

  教学目标

  1.使学生理解比例的意义,掌握组成比例的条件。

  2.使学生能正确地判断两个比能否组成比例。

  3.认识比例的各部分名称,掌握比例的基本性质。

  教学重点和难点

  比例的意义和性质的理解与应用。

  教学过程设计

  第一部分:比例的意义

  (一)复习准备

  1.求比值:

  2.请你找出比值相等的两个比。

  1.2∶0.4 24∶8 6∶2 1.2∶0.4 24∶8

  (二)学习新课

  1.一辆汽车第一次2小时行80千米,第二次6小时行240千米,请你说出第一次行驶路程和时间的比。

  板书:80∶2

  再请你说出第二次行驶路程和时间的比。

  板书:240∶6

  师:现在你分别求出两个比的比值。(学生口述,师板书:80∶2=40,240∶6=40)

  师:你们观察一下两个比的比值怎么样?这两个比之间有没有关系?(学生互说)

  得出:第一个比的比值是40,第二个比的比值也是40。因为比值相等,所以比就相等。(老师板书:两个比相等,可以用等号把两个比连起来。)

  教师把80∶2和240∶6中间用等号连起来,然后边指着边说:“像这样的式子在数学上是什么概念呢?这就是我们要学的新内容:比例的意义。”(老师板书课题)

  师:至于什么叫比例以及比例的各部分名称、组成比例的条件,请你结合思考题看书自学。(告诉学生页数,从第几行看到第几行。)

  思考题:

  1.什么叫比例?

  2.比例的各部分名称?

  3.组成比例的重要条件?

  采取自学→两人讨论→集体讨论。

  师再次强调组成比例的条件:

  A.必须是两个比。

  B.两个比的比值必须相等。

  C.必须是一个式子。

  最后得出:表示两个比相等的式子叫比例。(老师将板书完整化)两个比表面上看不同,其实质是相同的,也就是比值相同。那么判断两个比能不能组成比例式,关键是看比值是否相等,只要比值相等就可以组成比例。

  师:上面那些比符合比例的意义吗?能否组成比例?(学生说,老师连线或让学生连线。)

  比例还有其它书写格式吗?请同学们看,老师怎样写。

  (三)巩固反馈

  1.判断下面两个比能否组成比例?

  (1)1∶3和3∶9( )

  (2)60∶30和160∶80( )

  (4)0.2∶0.4和1.6∶4( )

  并组成比例。(学生先写再说)

  3.随意写比例,互相查看。(至少写2个)

  第二部分:比例的性质

  (一)讲授比例的性质

  让学生观察:在比例里有几个数?这几个数叫什么?这几个数有没有区别?

  学生发言,老师小结:比例是由两个比组成的,组成比例的四个数叫比例的项(老师边指边说),靠近等号的(中间的两项)两项叫内项,两端的两项叫外项。如:

  请你指出黑板上比例中的内外项。

  现在请你做一件工作:先算出两个外项的积,再算出两个内项的积。算完以后你发现什么规律?学生说算式,老师板书:

  通过以上几道题,使学生看到,在比例里两个外项的积等于两个内项的积。这个规律我们把它叫做比例的性质。(老师把课题补充完整。)

  师:这个规律是在什么前提下成立的呢?必须是在比例里,才能两个外项积等于两个内项的积。

  师:你们说说什么叫比例的性质?这是这节课要掌握的第二个内容。

  师:比例写成分数形式时,比例的性质如何理解呢?

  80×6=2×240 1.2×8=24×0.4

  即等号两端的分子、分母分别交叉相乘,积相等,用字母这样表示:

  (二)课堂练习

  (放幻灯片)

  (1)用比例性质验证你所写的比例是否正确?

  (2)用2,8,5,20四个数组成比例。

  (3)填适当的数。

  3∶18=5∶( )

  为什么填30?有几个答案?

  4.8∶0.6=( )∶2

  为什么只能填16?

  12∶( )=( )∶5

  有几个答案?

  (4)在比例中两个外项的积是80,那么这个比例中的内项积一定是几?为什么?

  (5)在比例中两个内项分别是45和2,那么这个比例中的两个外项积应该是几?为什么?

  (三)课堂总结

  (学生小结这节课所学内容。)

  1.质疑:(学生、老师质疑)(幻灯片)

  ①表示两个相等的式子叫比例。对吗?

  2.思考题:

  (1)根据30×3=45×2写比例式。

  (2)求x:

  12∶30=8∶x

  能不能应用今天所学的.内容解决?怎么解决?比例的性质还可以应用在什么问题上?

  课堂教学设计说明

  本教案是在学生学过比的意义和性质的基础上设计的,它包括比例的意义和组成比例的各部分名称,比例的基本性质及应用比例的基本性质解比例问题。本教案分为两部分,先教授比例的意义,再教授比例的性质。

  第一部分,首先通过复习求比值,找出比值相等的比,为教学比例的意义做好铺垫工作,然后再通过例题,用汽车两次行驶路程和时间的比,得出两个比的比值相等,从而概括出比例的意义,再利用比例意义判断两个比能否组成比例,老师安排了让学生写出比值相等的比,再组成比例,还安排了四个数组比例,目的在于加深对比例意义的认识和理解。

  第二部分,教学比例的性质。首先认识比例的各部分名称,认识内项和外项,然后引导学生计算出在比例中两个外项积和两个内项积,从而发现其中的规律,下面通过把比例写成分数形式,让学生形象地看到两个外项积和两个内项积就是将比例中等号两端的分子和分母分别交叉相乘,积相等,最后得出比例的性质。让学生应用比例的性质验证自己写的比例成立不成立,使学生明白,验证比例式是否成立,除了求比值的方法,也可以用求两个外项积和两个内项积是否相等的方法。课上安排应用比例性质进行填空练习,进一步加深学生对比例性质的认识与掌握。

  另外,在学生没有提出问题的情况下,老师出了两道题,目的是巩固对比例意义的认识与理解,最后老师出的思考题,为解比例做铺垫工作。

  在整个教学过程中,老师要重视学生的全面参与,通过学生动手、动脑、观察、计算、自学与讨论等活动,使学生学会比例的意义和性质。老师可根据本班学生的实际情况可做些调整,这一教学过程的设计,是符合学生的认知规律的,按照这个程序教学是会收到较好的教学效果的。

  板书设计

《比例的意义》教案9

  教学目标

  1.使学生理解并掌握比例的意义和基本性质.

  2.认识比例的各部分的名称.

  教学重点

  比例的意义和基本性质.

  教学难点

  应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

  教学过程

  一、复习准备.

  (一)教师提问复习.

  1.什么叫做比?

  2.什么叫做比值?

  (二)求下面各比的比值.

  12∶16 4.5∶2.7 10∶6

  教师提问:上面哪些比的比值相等?

  (三)教师小结

  4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以

  用等号连接.

  教师板书:4.5∶2.7=10∶6

  二、新授教学.

  (一)比例的意义(课件演示:比例的意义)

  例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:

  时间(时)

  2

  5

  路程(千米)

  80

  200

  1.教师提问:从上表中可以看到,这辆汽车,

  第一次所行驶的路程和时间的比是几比几?

  第二次所行驶的路程和时间的比是几比几?

  这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)

  2.教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式

  80∶2=200∶5或 .

  3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)

  教师提问:什么叫做比例?组成比例的关键是什么?

  板书:表示两个比相等的式子叫做比例.

  关键:两个比相等

  4.练习

  下面哪组中的两个比可以组成比例?把组成的比例写出来.

  (1)6∶10和9∶15 (2)20∶5和1∶4

  (3) 和 (4)0.6∶0.2和

  5.填空

  (1)如果两个比的比值相等,那么这两个比就( )比例.

  (2)一个比例,等号左边的比和等号右边的比一定是( )的.

  (二)比例的基本性质(课件演示:比例的基本性质)

  1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)

  2.练习:指出下面比例的外项和内项.

  4.5∶2.7=10∶6 6∶10=9∶15

  3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

  以80∶2=200∶5为例,指名来说明.

  外项积是:80×5=400

  内项积是:2×200=400

  80×5=2×200

  4.学生自己任选两三个比例,计算出它的外项积和内项积.

  5.教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质

  板书课题:加上“和基本性质”,使课题完整.

  6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?

  教师板书:

  7.练习

  应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.

  6∶3和8∶5 0.2∶2.5和4∶50

  三、课堂小结.

  这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.

  四、巩固练习.

  (一)说一说比和比例有什么区别.

  (二)填空.

  在6∶5=30∶25这个比例中,外项是( )和( ),内项是( )和( ).

  根据比例的基本性质可以写成( )×( )=( )×( ).

  (三)根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.

  1.6∶9和9∶12 2.1.4∶2和7∶10

  3.0.5∶0.2和 4. 和7.5∶1

  (四)下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)

  2、3、4和6

  五、课后作业.

  根据3×4=2×6写出比例.

  六、板书设计.

  省略

  第一课时

  教学内容:P32~34 比例的意义和基本性质

  教学目的:1、使同学理解比例的意义和基本性质,能正确判断两个比是否能组成比例。

  2、通过引导探究、概括归纳、讨论、合作学习,培养同学笼统概括能力。

  3、使同学初步感知事物间是相互联系、变化发展的。

  教学重点;比例的意义和基本性质

  教学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。

  教学过程:

  一、回顾旧知,复习铺垫

  1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。

  教师把同学举的例子板书出来,并注明比的各局部的名称。

  2、我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?教师板书出下面几组比,让同学求出它们的比值。

  12:16 : 4.5:2.7 10:6

  同学求出各比的比值后,再提问:哪两个比的比值相等?

  (4.5:2.7的比值和10:6的比值相等。)

  教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?这就是这节课我们要学习的内容。(板书课题:比例的意义)

  二、引导探究,学习新知

  1、教学比例的意义。

  (1)出示P32例1。

  每面国旗的长和宽的比分别是多少?指名分别算出一面国旗长和宽的比。

  5: 2.4:1.6 60:40 15:10

  每面国旗长和宽的比值有什么关系?(都相等)

  5: =2.4:1.6 60:40=15:10 2.4:1.6=60:40

  象这样表示两个比相等的式子叫做比例。

  比例也可以写成:

  (2)我们也学过不同的两个量也可以组成一个比,如:

  一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

  时间(时) 2 5

  路程(千米) 80 200

  指名同学读题。

  教师:这道题涉和到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。 这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问 边填写表格。)

  “你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据同学的回答,板书:

  第一次所行驶的路程和时间的比是80:2

  第二次所行驶的路程和时间的'比是200:5

  让同学算出这两个比的比值。指名同学回答,教师板书:80:2=40,200:5=40。让同学观察这两个比的比值。再提问:你们发现了什么?”(这两个比的比值都是40,这两个比相等。)

  教师说明:因为这两个比相等,所以可以把它们用等号连起来组成比例。(板书:80:2=200:5)像这样表示两个比相等的式子叫做比例。

  指着比例式4.5:2.7=10:6提问: “谁能说说什么叫做比例?”引导同学观察是表示两个比相等。然后板书:表示两个比相等的式子叫做比例。并让同学齐读一遍。

  “从比例的意义我们可以知道,比例是由几个比组成的?这两个比必需具备什么条件?因此判断两个比能不能组成比例,关键是看什么?假如不能一眼看出两个比是不是相等的,怎么办?”

  根据同学的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。假如不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。例如判断10:12和35: 42这两个比能不能组成比例,先要算出 10: 12= ,35: 42= ,所以 10:12=35:42。(以上举例边说边板书。)

  (3)比较“比”和“比例”两个概念。

  教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?

  引导同学从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

  (4)巩固练习。

  ①用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表示;不能就用两手的食指交叉表示。)

  6:3和12:6 35:7和45:9 20:5和16:8 0.8:0.4和0.3:0.6

  同学判断后,指名说出判断的根据。

  ②做P33“做一做”。

  让同学看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自身做得对不对。

  ③给出2、3、4、6四个数,让同学组成不同的比例(不要求举全)。

  ④P36练习六的第1~2题。

  对于能组成比例的四个数,把能组成的比例写出来。组成的比例只要能成立就可以。

  第4小题,给出的四个数都是分数,在写比例式时,也要让同学写成分数形式。

《比例的意义》教案10

  教学目标

  知识目标:理解比例的意义。

  技能目标:能正确判断两个比是否能组成比例,培养学生抽象概括能力。

  情感目标:使学生初步感知事物间是相互联系、变化发展的。

  教学重难点

  重点:理解比例的意义。

  难点:判断两个比能否组成比例。

  教学工具

  多媒体课件

  教学过程

  一、新课导入

  请同学们回忆一下比的知识,比的前项、后项和比值。

  二、教学过程

  1.比例的意义

  (1)出示P40例1

  操场上和教室里两面国旗的`长和宽的比值有什么关系?

  2.4∶1.6=3∶2

  60∶40=3∶2

  2.4∶1.6=60∶40

  象这样表示两个比相等的式子叫做比例。

  比例也可以写成:=

  做一做

  1、下面那组中的两个比可以组成比例?把组成的比例写出来。

  (1)6∶10和9∶15 (2)20∶5和1∶4

  (3) ∶和6∶4 (4)0.6∶0.2和∶

  答:(1)6∶10=3∶5 9∶15=3∶5 (2)20∶5=4∶1 (3)6∶4=3∶2

  (4)0.6∶0.2=3∶2 ∶ =3∶1

  所以,只有第一组可以组成比例为6∶10=9∶15

  2、用图中4个数据可以组成多少比例?

  答:2∶4=1.5∶3 4∶2=3∶1.5 3∶4=1.5∶2 4∶3=2∶1.5

  全课小结

  通过这节课,我们学到了什么知识?什么是比例?

  拓展延伸

  用8、12四个数分别作为比例的项,你能组成几个比例?

课后小结

  通过这节课,我们学到了什么知识?什么是比例?

  课后习题

  一、填空

  1、( )叫做比例。

  2、两个比的( )相等,这两个比就相等。

  3、把6×8=24×2改写成四个比例。

  4、把7m=8n改写成四个比例。

  5、根据8×9=3×24,写出比例( )

  6、如果7a=6b,那么a:b=( ):( )。

  7、如果9a=5b,那么b:a=( ):( )。

  二、选择

  1、下面的比中能与3∶8组成比例的是( )。

  A.3.5∶6 B.1.5∶4 C.6∶1.5

  2、甲数除乙数的商是1.8,那么甲数与乙数的比是( )。

  A.9:5 B.5:9 C.1:8

  3、下面的数中,能与6、9、10组成比例的是( )。

  A.7 B.5.4 C.1.5

  板书

  表示两个比相等的式子叫做比例。

《比例的意义》教案11

  素质教育目标

  (一)知识教学点

  1.使学生理解正比例的意义。

  2.能根据正比例的意义判断两种量是不是成正比例。

  (二)能力训练点

  1.培养学生用发展变化的观点来分析问题的能力。

  2.培养学生抽象概括能力和分析判断能力。

  (三)德育渗透点

  1.通过引导学生用发展变化的观点来分析问题,使学生进一步受到辩证唯物主义观点的启蒙教育。

  2.进一步渗透函数思想。

  教学重点:使学生理解正比例的意义。

  教学难点:引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念。

  教具学具准备:投影仪、投影片、小黑板。

  教学步骤

  一、铺垫孕伏

  用投影逐一出示下列题目,请同学回答:

  1.已知路程和时间,怎样求速度?

  2.已知总价和数量,怎样求单价?

  3.已知工作总量和工作时间,怎样求工作效率?

  二、探究新知

  1.导入新课:这些都是我们已经学过的常见的数量关系。这节课,我们继续研究这些数量关系中的一些特征。

  2.教学例1

  (1)投影出示:一列火车1小时行驶60千米,2小时行驶120千米,3小时行驶180千米,4小时行驶240千米,5小时行驶300千米,6小时行驶360千米,7小时行驶420千米,8小时行驶480千米……

  (2)出示下表,并根据上述内容填表。

  一列火车行驶的时间和所行的路程如下表

  (3)边填表边思考:在填表过程中,你发现了什么?

  学生交流时,使之明确。

  ①表中有时间和路程两种量。

  ②当时间是1小时,路程则是60千米,时间是2小时,路程是120千米……时间变化,路程也随着变化,时间扩大,路程随着扩大;时间缩小,路程也随着缩小。

  教师点拨:

  像这样,时间变化,路程也随着变化,我们就说,时间和路程是两种相关联的量。(板书:两种相关联的量)

  ③如果学生没有问题,教师提示:请每位同学任选一组相对应的数据,计算出路程与时间的比的比值。

  教师问:根据计算,你发现了什么?

  引导学生得出:相对应的两个数的比值都是60或都一样,固定不变等。

  教师指出:相对应的`两个数的比的比值都一样或固定不变,在数学上叫做“一定”。(板书:相对应的两个数的比值一定)

  ④比值60,实际就是火车的速度。用式子表示它们的关系就是:

  (4)教师小结:

  刚才同学们通过填表、交流,我们知道时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总是一定的。

  3.教学例2

  (1)出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。

  (2)观察上表,引导学生明确:

  ①表中有数量(米数)和总价这两种量,它们是两种相关联的量。

  ②总价随米数的变化情况是:

  米数扩大,总价随着扩大;米数缩小,总价也随着缩小。

  ③相对应的总价和米数的比的比值是一定的。

  ④比值3.1,实际就是这种花布的单价。用式子表示它们的关系就是:

  (3)师生小结:通过刚才的观察和分析,我们知道总价和米数也是两种什么样的量?(两种相关联的量)为什么?(总价随着米数的变化而变化。)怎样变化?(米数扩大,总价随着扩大;米数缩小,总价随着缩小。)它们扩大、缩小的规律是怎样的?(总价和米数的比的比值总是一定的。)

  4.抽象概括正比例的意义。

  (1)比较例1、例2,思考并讨论,这两个例子有什么共同点?

  (2)学生初步交流时引导学生明确:

  ①例1中有路程和时间两种量;例2中有米数和总价两种量。即它们都有两种相关联的量;

  ②例1中时间变化,路程就随着变化;例2中米数变化,总价也随着变化。

  教师点拨:像这样,我们就可以说:一种量变化,另一种量也随着变化。(板书)

  ③例1中路程与时间的比的比值一定:例2中总价与米数的比的比值一定。概括地讲就是:两种量中相对应的两个数的比值(也就是商)一定。

  (学生答不出来时,教师引导、点拨,并补充板书:两种量中)

  (3)引导学生抽象概括出两例的共同点:

  两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值(也就是商)一定。

  (4)教师指明:两种相关联的量,一种变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

  (补充板书:如果这成正比例的量正比例关系)

  这就是我们这节课学习的“正比例的意义”(板书课题)

  (5)看书19、20页的内容,进一步理解正比例的意义。

  (6)教师说明:在例1中,路程随着时间的变化而变化,它们的比的比值(速度)保持一定,所以路程和时间是成正比例的量。

  (7)想一想:在例2中,有哪两种相关联的量?它们是不是成正比例的量?为什么?

  (8)教师提出:如果字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?

  (9)教师提出:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?

  5.教学例3

  (1)出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?

  (2)根据正比例的意义,由学生讨论解答。

  (3)汇报判断结果,并说明判断的根据。

  教师板书:

  面粉的总重量和袋数是两种相关联的量。

  所以面粉的总重量和袋数成正比例。

  6.反馈练习

  让学生试做第21页的做一做,并订正。

  三、巩固发展

  1.完成练习三第1题。

  先想一想成正比例的量要满足哪几个条件?再算出各表相对应数的比的比值。如果相等,列关系式判断。第(3)题不成比例,订正时要学生说明为什么?

  2.完成练习三第2题的(1)-(9)

  先让学生自己判断,再订正。

  四、全课小结(师生共同进行)

  通过这节课的学习,你都知道了什么?怎样判断两种量是否成正比例?

《比例的意义》教案12

  教学目标:

  1、 理解比例的意义,认识比例各部分名称,初步了解比和比例的区别;理解比例的基本性质。

  2、 能根据比例的意义和基本性质,正确判断两个比能否组成比例。

  3、 在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

  4、 通过自主学习,让学生经经历探究的过程,体验成功的快乐。

  教学重、难点:

  重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。

  难点:自主探究比例的基本性质。

  教学准备:CAI课件

  教学过程:

  一、复习、导入

  1、 谈话:同学们,我们已经学过了比的有关知识,说说你对比已经有了哪些了解?(生答:比的意义、各部分名称、基本性质等。)

  还记得怎样求比值吗?

  2、 课件显示:算出下面每组中两个比的比值

  ⑴ 3:5 18:30 ⑵ 0.4:0.2 1.8:0.9

  ⑶ 5/8:1/4 7.5:3 ⑷ 2:8 9:27

  [评析:从学生已有的知识经验入手,方便快捷,为新课做好准备。]

  二、认识比例的意义

  (一)认识意义

  1、 指名口答上题每组中两个比的比值,课件依次显示答案。

  师问:口算完了,你们有什么发现吗?(3组比值相等,1组不等)

  2、是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:3:5=18:30 。

  (课件显示:“3:5”与“18:30”先同时闪烁,接着两个比下面的比值隐去,再用等号连接)

  最后一组能用等号连接吗?为什么?(课件显示:最后一组数据隐去)

  数学中规定,像这样的一些式子就叫做比例。(板书:比例)

  [评析:通过口算求比值,发现有3组比值相等,1组不等,自然流畅地引出比例。有效的课堂教学,就需要像这样做好已有经验与新知识的衔接。]

  3、今天这节课我们就一起来研究比例,你想研究哪些内容呢?

  (生答:想研究比例的意义,学比例有什么用?比例有什么特点……)

  5、 那好,我们就先来研究比例的意义,到底什么是比例呢?观察这些式子,你能说出什么叫比例吗?

  (根据学生的回答,教师抓住关键点板书:两个比 比值相等)

  同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。

  课件显示:表示两个比相等的式子叫做比例。

  学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

  [评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生读一读,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。]

  (二)练习

  1、 出示例1 根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。

  第一次

  第二次

  买练习本的钱数(元)

  1.2

  2

  买的本数

  3

  5

  (1)学生独立完成。

  (2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。

  2、完成练习纸第一题。

  一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。

  ⑴分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

  ⑵分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?

  [评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。练习1其实是对例题的巧妙补充。]

  3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?

  (引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)

  4、教学比例各部分的名称

  (1) 课件出示: 3 : 5

  前项 后项

  (2) 课件出示:3 : 5 = 18 : 30

  内项

  外项

  (3) 如果把比例写成分数的`形式,你能指出它的内、外项吗?

  课件出示:3/5=18/30

  [评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]

  5、小结、过渡:

  刚才我们已经研究了比例的意义、各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

  三、探究比例的基本性质

  1、课件先出示一组数:3、5、10、6

  再出示:运用这四个数,你能组成几个等式?(等号两边各两个数)

  2、 独立思考,并在作业本上写一写。

  学生组成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……

  根据学生回答板书: 3×10=5×6 3:5=6:10

  3:6=5:10

  5:3=10:6

  6:3=10:5

  3、 引导发现规律

  (1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)

  乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不同,因为比值各不相同)

  (2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?

  (3)学生先独立思考,再小组交流,探究规律。

  (板书:两个外项的积等于两个内项的积。)

  [评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]

  4、验证:是不是任意一个比例都有这样的规律?

  ⑴课件显示复习题(4组),学生验证。

  ⑵学生任意写一个比例并验证。

  ⑶完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

  [评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]

  5、思考3/5=18/30是那些数的乘积相等。课件显示:交叉相乘。

  6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)

  四、 综合练习

  完成练习纸2、3、4

  附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。

  14 :21 和 6 :9

  1.4 :2 和 5 :10

  3、判断下面哪一个比能与 1/5:4组成比例。

  ①5:4 ② 20:1

  ③1:20 ④5:1/4

  4、在( )里填上合适的数。

  1.5:3=( ):4

  =

  12:( )=( ):5

  [评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]

  五、全课总结(略)

《比例的意义》教案13

  教学内容:

  课本第1~2页例1、例2,练习一第1、2、3题,比例的意义和基本性质。

  教学目的:

  1.理解和掌握比例的意义和基本性质,认识比例的各部分名称。

  2.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。

  3.使学生进一步受到“实践出真知”的辩证唯物主义观点的启蒙教育。

  教学重点:理解比例的意义和基本性质。

  教学难点:应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。

  教学关键:

  观察众多的实例,概括出比例意义的过程;找出在比例里两个内项的积与两个外项的积相等的规律。

  教具:投影片、小黑板

  教学过程:

  一、谈话导入,创设情境

  (一)教师出示投影,结合画面谈话引入。

  师:同学们看了我们祖国各地的风景图片,美吗?我们的祖国方圆960万平方公里,幅员之辽阔,却能在一张小小的地图上清晰可见各地位置;科学家在研究很小很小的生物细胞时,想清楚地看见细胞各部分,就要借助显微镜将细胞按比例放大。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

  教师板书课题:比例的意义和基本性质。

  (二)让学生完成教材第1页复习题,根据学生回答教师板书:10:6=4.5:2.7。

  二、自主探究,学习新知

  (一)教学比例的意义

  1.合作互动,探求共性。

  先让学生在小组活动中完成“活动内容1”。

  活动内容1:

  (1)根据表中给出的数量写有意义的.比。

  (2)观察写出的比,哪些比能用等号连接,为什么?

  (3)根据比与分数的关系,这样的式子还可以怎样写?

  然后让学生汇报活动情况,小学数学教案《比例的意义和基本性质》。结合学生回答,教师任意板书几个比例式。(如80:2=200:5, = ,2:5=80:200,5:200=2:80……)并指出这些式子就是比例。

  2.抽象概括,及时巩固。

  (l)教师指导学生观察以上比例式,概括出共性。

  (2)让学生用自己的语言描述比例的意义。并板书:表示两个比相等的式子叫做比例。

  (3)完成第2页“做一做”,并说明理由。

  (4)让学生自己举出两个比例,并说明理由。

  (二)教学比例的基本性质。

  1.认识比例各部分名称。

  (l)让学生查阅教材,认识比例各部分的名称。根据学生汇报,教师板书:“内项”、“外项”。

  (2)让学生观察自己刚才举的比例,找出它的内项、外项。

  (3)引导学生观察把比例写成分数形式,比例的外项和内项的位置又是怎样的?教师板书:

  2.引导学生发现比例的基本性质。

  (1)让学生小组活动完成以下活动内容2:

  活动内容2:

  ①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。

  ②如果把比例写成分数形式,是否也有如上面发现的规律?

  ③是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。

  ④通过以上研究,你发现了什么?

  (2)学生汇报活动情况,认识到任何比例的两个内项的积与两个外项的积都存在相等的关系。

  (3)指导学生概括出比例的基本性质,并完成板书。

  三、分层练习,辨析理解

  1.完成练习一第1题区别比与比例。

  2.先让学生解答第2页“做一做”第l题,然后引导学生小结:判断两个比能否组成比例,不仅可以应用比例的意义,而且可以应用比例的基本性质。

  3.完成练习一第2题。

  4.下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。

  2、3、4和6

  四、全课总结

  先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。

  五、课堂作业

  练习一第3题。

《比例的意义》教案14

  教学内容:教科书第9—10页比例的意义和基本性质.练习四的第1—3题。

  教学目的:使学生理解比例的意义和基本性质。

  教学过程():

  一、教学比例的意义

  1.复习。

  (1)教师:请同学们回忆一下上学期我们学过的比的知识.谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。教师把学生举的例子板书出来,并注明比的各部分的名称。

  (2)教师:我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?

  教师板书出下面几组比,让学生求出它们的比值。

  12:16 :1 4·5:2.7 10:6

  学生求出各比的比值后,再提

  “请同学们观察一下,哪两个比的比值相等?”(4.5:2.7的比值和10:6的比值相等。)

  教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?

  这就是这节课我们要学习的内容。(板书课题:比例的意义)

  2.教学比例的意义。

  (1)出示例1:“一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。”指名学生读题。

  教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问边填写表格。)

  “你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据学生的回答。

  板书:第一次所行驶的路程和时间的比是80:2

  第二次所行驶的路程和时间的比是200:5

  然后让学生算出这两个比的比值。指名学生回答,教师板书:80:2=40, 200:5=40。让学生观察这两个比的比值。再提问:

  “你们发现了什么?”(这两个比的比值都是40。)

  “所以这两个比怎么样?”(这两个比相等。)

  教师说明:因为这两个比相等,所以可以把它们用等号连起来。(板书:80:2=200:5或 = )像这样(指着这个式子和复习题的式子4. 5:2.7=10:6)表示两个比相等的式子叫做比例。

  指着比例式80:2=200:5,提问:

  “谁能说说什么叫做比例?”引导学生观察是表示两个比相等。然后板书:表示两个比相等的式子叫做比例。并让学生齐读一遍。

  “从比例的意义我们可以知道.比例是由几个比组成的?这两个比必须具备什么条件:因此判断两个比能不能组成比例,关键是看什么?如果不能一眼看出两个比是不是相等的,怎么办?”

  根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的 比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一限看出两个比是不是相等?可以先分别把两个比化简以后再看。例如判断10;12和35:1:这两个比能不能组成比例,先要算出10:12= ,35:42= ,所以10:12=35:42:(以上举例边说边板书。)

  (2)比较“比”和“比例”两个概念。

  教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?

  引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

  (3)巩固练习。

  ①用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表 示;不能就用两手的`食指交叉表示。)

  6:3和12:6 35:7和45:9

  20:5和.16:8 0.8:0.4和 : :

  学生判断后,指名说出判断的根据。

  ②做第10页的“做一做”。

  让学生看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自己做得对不对。

  ③给出2、3、4、6四个数,让学生组成不同的比例(不要求举全)。

  ④做练习四的第3题。

  对于能组成比例的四个数,把能组成的比例写出来:组成的比例只要能成立就可以。

  第4小题,给出的四个数都是分数,在写比例式时,也要让学生写成分数形式。

  二、教学比例的基本性质

  1.教学比例各部分的名称。

  教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书第10页看第6行到9行。看看什么叫比例的项、外项、内项。(学生看书时,教师板书:80:2=200:5)

  指名让学生指出板书出的比例的外项、内项。随着学生的回答教师接着板书如下:

  80 :2=:200 :5

  内项

  外项

  2.教学比例的基本性质。

  教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:

  两个外项的积是80×5=400

  两个内项的积是2×200=400

  “你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×20“是不是所有的比例式都是这样的呢?”让学生分组计算前面判断过的比例式。

  “通过计算,大家发现所有的比例式都有这个共同的规律。谁能用一句话把这个规律说出来?”可多让一些学生说,说得不完整也没关系.让后说的同学在先说的同学的基础上说得更完整。

  最后教师归纳并板书出:在比例里.两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。

  “如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80;2=200:5)教师边问边改写成: =

  “这个比例的外项是哪两个数呢?内项呢?”

  “因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式.等号两 端的分子和分母分别交叉相乘的积怎么样?”边问边画出交叉线,如: =

  学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。板书: = 80×5=2×200

  3.巩固练习。

  教师:前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。

  (1)应用比例的基本性质判断3:4和6:8能不能组成比例。

  教师:我们可以这样想:先假设3:4和6:8可以组成比例。再算出两个外项的积(板书:两个外项的积:3×8=:1)和两个内项的积(板书:两个内项的积:4×6=24)。因为3×8=4×6(板书出来).也就是说两个外项的积等于两个内项的积,所以

  3:4和6:8可以组成比例。(边说边板书:3:4=6:8)

  (2)做第11页“做一做”的第1题。

  三、小结

  教师:通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

  四、作业

  练习四的第2题。

《比例的意义》教案15

  教学内容:

  比例的意义和基本性质。

  教学要求:

  使学生理解比例的意义,会用比例的意义正确地判断两个比是否 成比例,使学生理解比例的基本性质。

  教学重点:

  理解比例的意义和基本性质。

  教学难点:

  灵活地判断两个比是否组成比例。

  教 具:

  投影机等。

  教学过程:

  一、复习。

  1、什么叫做比?什么叫做比值?

  2、求出下面各比值,哪些比的比值相等?

  12:16 : 4.5:2.7 10:6

  二、提示课题,引入新课。

  1、引入:如果有两个比是相等的,那么这两个相等的比以叫做什么?它有什么样的性质?这节课我们就一起来研究它。

  2、引入新课。

  三、导演达标。

  1、教学比例的意义。

  (1)引导学生观察课本的表格后回答:

  A、第一次所行驶的路程和时间的比是什么?

  B、第二次所行驶的'路程和时间的比是什么?

  C、这两次比的比值各是什么?它们有什么关系?

  板书: 80:2=200:5 或 =

  (2)引出比例的意义。

  A、表示两个比相等的式子叫做比例。

  B、讨论:组成比例必须具备什么条件?如何判断两个比是不是组成比例的?比和比例有什么区别?

  C、判断两个比能不能组成比例,关键是看两个比的比值是否相等。

  D、做一做。(先练习,后讲评)

  2、教学比例的基本性质。

  (1)看书后回答:

  A、什么叫做比例的项?

  B、什么叫做比例的外项、内项?

  (2)引导学生总结规律?

  先让学生计算,两个外项的积,再计算两个内项的积,最后让学生总结出比例的基本性质,然后强调,如果把比例写成分数形式,比例的基本性质就是等号两端的分子和分母分别交叉相乘的积相等。

  3、练习:判断下面的哪组比可以组成比例。

  6:9和9:12 1.4:2和7:10

  四、巩固练习:第一、二题。(指名回答,集体订正)

  五、总结:今天我们学习了什么?

  比例的意义和比例的基本性质及怎样判断两个比是否可以组成比例的方法。

  六、作业:第二题。

【《比例的意义》教案】相关文章:

《比例的意义》教案12-10

反比例的意义教案04-01

《正比例的意义》教案09-01

《比例的意义》教案(15篇)01-12

《比例的意义》教案14篇02-11

《比例的意义》教案精选15篇02-20

《比例的意义》教案15篇01-11

《比例的意义》教案(汇编15篇)03-02

《比例的意义》教案通用15篇02-28

比例的意义和基本性质教案04-10