- 相关推荐
平行四边形面积的计算教案
作为一名默默奉献的教育工作者,很有必要精心设计一份教案,教案有利于教学水平的提高,有助于教研活动的开展。那么问题来了,教案应该怎么写?下面是小编为大家整理的平行四边形面积的计算教案,欢迎阅读,希望大家能够喜欢。
平行四边形面积的计算教案 篇1
教学内容:九义教材数学第九册第70~72页,练习十七第1~3题。
素质教育目标:
(一)知识教学点
1.使学生理解并掌握平行四边形面积的计算公式。
2.能正确地计算平行四边形的面积。
(二)能力训练点
1.通过操作,进一步发展学生思维能力。
2.培养学生运用转化的方法解决实际问题的能力,发展学生的空间观念。
(三)德育渗透点
引导学生运用转化的思想探索规律。
教学重点:理解并掌握平行四边形面积的计算公式。
教学难点:理解平行四边形面积计算公式的推导过程。
教具学具准备:
1.活动长方形支架。
2.平行四边形演示课件。
3.每个学生准备一张画上高的平行四边形纸板和剪刀。
教学步骤
一、铺垫孕伏1.出示活动长方形支架。提问:这是什么形体?怎样计算长方形的面积?板书:长方形的面积=长×宽
2.把活动长方形支架对角一拉,使它变成平行四边形。提问:现在还是长方形吗?什么叫平行四边形?你能指出它的底和高吗?
二、探究新知
1.导入:我们学过长方形面积的计算。平行四边形的面积该怎样计算呢?这节课我们就来共同研究“平行四边形面积的计算”。板书课题。
2.用数方格的方法计算平行四边形的面积。
(1)打开书71页齐读第二段。
(2)指名到实物投影仪上数。我先数......,它是......平方厘米;再数......,它是......平方厘米;两部分合起来是......平方厘米。
(3)投影出示长方形。提问:数一数,这个长方形的长是多少?宽是多少?怎样计算它的面积。
(4)比较。提问:它们的面积怎么样?平行四边形的底和长方形的长怎么样?平行四边形的高和长方形的宽呢?
引导学生明确:平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。
(5)从前面的研究我们知道,平行四边形的面积也可以用数方格的方法求出来。但数起来很麻烦,且不精确。特别是较大的平行四边形,如花园那么大就不好数了。我们能不能也像计算长方形的面积那样,找出平行四边形面积的计算方法呢?
3、通过操作,将平行四边形转化成长方形。
(1)、提问。能不能用剪拼的办法将同学们手中的平行四边形转化成长方形呢?试试看。(每个只准剪一次。)
(2)、提问。通过剪拼你发现了什么规律?任何一个平行四边形都可以转化成一个长方形。(只有沿平行四边形的高剪下。)在转化的过程中,怎样按一定的规律来做呢?(老师演示)
A.先沿着平行四边形的高剪下左边的直角三角形。
B.左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
C.移动一段后,左手改按梯形的.左部。右手再拿着直角三角形继续沿着底边向右慢慢移动,到两个斜边重合为止。
D、同学们像老师刚才演示那样,平移一次。(老师巡视指导)
E、投影再显示平移过程,加深认识。
4、归纳整理
(1)、投影显示两个图形,比较。你发现了什么?请填71页书空。
(2)、平行四边形转化成长方形后,面积有没有变化?长方形的面积和原来的平行四边形的面积怎么样?(板书)
(3)、这个长方形的长与平行四边形的底怎么样?
(4)、这个长方形的宽与平行四边形的高怎么样?
(5)、这个长方形的面积怎么求?那么平行四边形的面积呢?(因为......所以......板书)
(6)、请学生口述推导过程。同时投影演示。
5教学字母公式
(1)、介绍字母的意义及读法。(板书S=a×h)
(2)、说明在含有字母的式子里,字母和字母中间的乘号可以记作“˙”,也可以省略不写。(板书s=a?h或s=ah)
(3)、提问:计算平行四边形的面积,需要知道那些条件?
6、应用公式计算
(1)投影显示72页例题
A、读题,理解题意。
B、学生试做,提示得数保留整数。
C、订正。老师出示正确答案。提问:此题根据什么这样列式?
(2)、完成72页“做一做”第1、2题。
A、抽两个同学在投影片上做,其余的在作业本上做。B、订正时提问:计算时注意那些问题?老师出示正确答案。
三、巩固发展
1、填空(出示投影)平行四边形面积计算公式的推导。任意一个平行四边形都可以转化成一个(),它的面积与原平行四边形的面积()。这个长方形的长与原平行四边形的()相等。这个长方形的()与原平行四边形的()相等。因为长方形的面积等于(),所以平行四边形的面积等于()。
2、比较。73页第6题(出示投影)强调等底等高的平行四边形面积相等。
3、判断。我们开始演示的活动长方形支架的面积和由它变成的平行四边形的面积相等吗?为什么?
四、全课总结。
这节课我们共同研究了什么?怎样求平行四边形的面积?平行四边形的面积是怎样推导出来的?
五、布置作业
练习十七第2、3题。
六、板书设计
平行四边形面积的计算
长方形的面积=长×宽
平行四边形的面积=底×高
S=a×h
S=a·h或S=ah
点评:该课整个过程从动手操作→观察思考→归纳慨括,遵循了概念教学的原则和学生的认识规律。通过操作演示再现已有的表象,又借助已有的知识经验,通过观察、分析、比较、推理、概括出平行四边形的面积公式,教师适当点拨,使学生的思维始终处于积极状态,成为学习的主人。
平行四边形面积的计算教案 篇2
教学目标:
1、在学生理解的基础上掌握平行四边形面积计算公式,能正确地计算平行四边形的面积。
2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法在研究平行四边形面积时的运用。
3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:理解并掌握平行四边形的面积公式
教学难点:理解平行四边形面积公式的推导过程
教学过程:
一、复习导入:
1、说出学过的平面图形。
2、在这些图形中,哪些图形的面积你会求?
二、探究新知:
1、教学例1:
(1)出示例1中的第1组图
要求:下面的两个图形面积是否相等?在小组里说一说你准备怎样比较这两个图形的面积。(学生分组活动后组织交流)
(2)出示例1中的第2组图
要求:不用刚才的方法还能比较这两个图形的大小吗?(学生交流,教师适当强调“转化”的方法。)
(3)揭示课题:
师:今天我们运用已学过有关知识运用转化的数学思想来研究新图形的面积计算公式。今天我们来研究“平行四边形面积的计算”。(板书课题)
2、教学例2:
(1)出示一个平行四边形
师:你能想办法把这个平行四边形转化成学过的图形吗?
(2)学生操作,教师巡视指导。
(3)学生交流操作情况
第一种:①沿着平行四边形的高剪下左边的直角三角形。
②把这个三角形向右平移。
③到斜边重合。
第二种:①沿着平行四边形的.任意一条高将其剪为两个梯形。
②把左侧的梯形向右平移。
③道斜边重合。
(4)教室用课件进行演示并小结。
师:沿着平行四边形的任意一条稿剪开,再通过平移,都可以把平行四边形转化成一个长方形。
(5)小组讨论:
①转化后长方形的面积与原平行四边形面积相等吗?
②长方形的长与平行四边形的底有什么关系?
③长方形的宽与平行四边形的高有什么关系?
(6)学生总结,形成下面的板书:
长方形的面积=长X宽
平行四边形的面积=底X高
3、教学例3:
(1)提问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第123页上任选一个平行四边形剪下来,先把它转化成长方形,再求出面积并填写下表。
转化后的长方形平行四边形
长(cm)宽(cm)面积(cm)底(cm)高(cm)面积(cm)
(2)学生操作,反馈交流。
(3)用字母表示面公式:S=ah(板书)
三、巩固练习:
1、指导完成试一试:明确应用公式求平行四边形的面积一般要有两个条件,即底和高。
2、指导完成练一练:强调底和高的对应关系。
四、总结:
师:通过今天的学习有哪些收获?
板书设计:平行四边形面积的计算转化
已学过的图形新图形割补、剪拼
因为长方形的面积=长×宽
所以平行四边形的面积=底×高
课后札记:
平行四边形面积的计算教案 篇3
教学目标
1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。
3.对学生进行辩诈唯物主义观点的启蒙教育。
教学重点
理解公式并正确计算平行四边形的面积。
教学难点
理解平行四边形面积公式的推导过程。
教学过程
一、复习引入
1.拿出事先准备好的长方形和平行四边形。量出它的长和宽(平行四边形量出底和高)。
2.观察老师出示的几个平行四边形,指出它的底和高。
3.教师出示一个长方形和一个平行四边形。
猜测:
哪一个图形面积比较大?大多少平方厘米呢?
师:要想我们准确的答案,就要用到今天所学的知识--平行四边形面积的计算(板书课题)
二、指导探究
1.数方格方法
(1)小组合作讨论:
a.图上标的厘米表示什么?每个小方格表示1平方厘米为什么?
b.长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米?
c.用数方格的方法,求出平行四边形的面积?(不满一格的,都按半格计算)
d.比较平行四边形的底和长方形的长,再比较平行四边形的高和长方形的宽,你发现了什么?
(2)集体订正
(3)请同学评价一下用数方格的方法求平行四边形的面积。
(麻烦,有局限性)
2.探索平行四边形面积的计算公式。
(1)教师讲话:不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。
(2)学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的。
(3)同学到前面演示转化的方法。
(4)教师演示课件并组织学生讨论:
①平行四边形和转化后的长方形有什么关系?
②怎样计算平行四边形的面积?为什么?
③如果用S表示平行四边形的面积,用a表示平行四边形的底,用n表示平行四边形的.高,那么平行四边形面积的字母公式是什么?
3、应用
例1一块平行四边形钢板,它的面积是多少?(得数保留整数)
4.83.517(平方米)
答:它的面积约是17平方米。
三、质疑小结
今天你学到了哪些知识?怎样计算平行四边形面积?
四、巩固练习
1、列式并计算面积
①底厘米,高厘米,
②底米,高米,
③底分米,高分米
2、说出下面每个平行四边形的底和高,计算它们的面积。
3、应用题
有一块地近似平行四边形,底是43米,商是20.1米,这块地的面积约是多少平方米?(得数保留整数)
4、量出你手里平行四边形学具的底和高,并计算出它的面积。
平行四边形面积的计算教案 篇4
教学目标
1、巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。
2、养成良好的审题习惯。
教学重点
运用所学知识解答有关平行四边形面积的应用题。
教学难点
运用所学知识解答有关平行四边形面积的'应用题。
教学准备
三角板,直尺等。
教学过程
一、基本练习
1.口算。
4.9÷0.7 5.4+2.6 4×0.25 0.87-0.49
530+270 3.5×0.2 542-98 6÷12
2.平行四边形的面积是什么?它是怎样推导出来的?
3.口算下面各平行四边形的面积
⑴底12米,高7米;
⑵高13分米,第6分米;
⑶底2.5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
⑴生独立列式解答,集体订正。
⑵如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?
①必须知道哪两个条件?
②生独立列式,集体讲评:先求这块地的面积:250×780÷10000=1.95公顷,
再求共收小麦多少千克:7000×1.95=13650千克
⑶如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500÷(250×78÷1000)
⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
三、巩固练习
1.测量右图中平行四边形的一条底边和它对应的高,
并计算它们的面积。
2.分别计算图中每个平行四边形的面积,
你发现了什么?(单位:㎝)
四、总结全课
通过本节课的练习,你有什么收获?你还有哪些疑难问题?
五、作业
优化作业。
平行四边形面积的计算教案 篇5
教学内容:
九年义务教育教科书人教版第九册P 64-67
教学目的:
1.通过操作掌握平行四边形面积的计算方法并能解决实际问题。
2.通过剪、拼等活动培养学生的探索意识及主动探究的能力。
3.培养学生学习数学的兴趣及积极参与、团结协作的精神。
教学重点:平行四边形面积的计算方法
教学难点:平行四边形面积公式的推导过程
教具准备:课件、平行四边形图形、剪刀
教学过程:
一、创设情境,复习旧知,引入新知
师:黄山美景闻名于全国,黄山四绝更是我们黄山的骄傲,"温泉"是黄山四绝之一。黄山某宾馆利用当地温泉资源修建一个游泳池,(课件出示长方形游泳池的效果图和平面图)你能算出这个温泉的占地面积吗?(要求学生写出长方形面积公式)
老师来自于海南,海南也是一个美丽的地方,让我们一起来欣赏海南一处美丽风光。(课件播放录像:海南美丽风光-神州半岛)
师:这就是海南美丽的神州半岛。中信泰富公司准备对神州半岛进行开发。但开发之前,中信泰富公司的人员需要知道神州半岛的大概面积,你们能帮忙算出神州半岛的面积吗?
师:(课件显示:描出神州半岛边框--形成平行四边形)同学们神州半岛,从地图上看这个围成神州半岛,像我们以前学过的那种图形?怎样计算平行四边形的面积?请同学们大胆的猜一猜。
(评析:从学生熟悉的'情境和图形入手,再引出学生陌生而熟悉的情境--海南岛中呈"平行四边形"形状的神州半岛,两个情境、两种图形前呼后应,不仅为新课的学习作好了过度,更重要的是拉近了"陌生"师生之间的情感距离。)
二、动手操作、验证猜想
1、师:大家猜得对不对呢?想不想自己亲自动手验证一下?
2、分组验证,请小组内的同学先商量打算怎样验证所提出的猜想,再利用手中学具和平行四边形进行验证。
3、讨论交流
(1)组内交流。先说一说自己的结论,再说是怎样验证的,组内互相补充。
(2)全班交流。以小组为单位汇报,有不同意见的小组可发表意见?(全班交流时,注意猜想错误小组的结果验证。)
(评析:这是新知识学习的重要环节,教师采取"大胆猜想-组内验证-全班交流"的手法,为学生提供了"做数学"的机会,让学生通过动脑想问题、动手验证问题、动口说明问题,使学生个体的手、口、脑都参与到教学过程之中,有效地激发了学生的学习积极性,同时通过师生、生生、群体之间的互动交流,化"静"的知识接受为"动"的知识建构,让学生在学习过程中充分地体验数学和经历数学的形成过程。)
三、深入探究,内化知识
1、看图思考
(1)为什么要转化成长方形?
(2)为什么要沿高剪开?不沿高剪开行不行?
(评析:通过这样深入的探究,将学生为动而动的状态引向有效的"做数学"活动,不仅有效地渗透了数学的转化思想,而且更好地培养了学生的多向思维和发散思维的能力。)
2、我们一起再来回顾一下同学们的验证过程。(师小结并用课件演示平行四边形面积的推导过程)
(评析:这样的重复,有利于突出本课教学中的重点、突破难点。)
3、看书质疑。
(1)对于平行四边形的面积计算方法你还有疑问吗?
(2)请同学们认真阅读64至65页内容,通过看书你又知道了什么?还有什么问题?
(评析:课本乃学生学习中的重要媒体之一,要充分地发挥这个重要媒体的作用,让学生通过"看书质疑",既有利于培养学生通过阅读数学材料获取知识的能力,又有利于学生掌握学习方法。)
四、反馈练习,发展思维
1、基本练习--计算平行四边形图形的面积。
2、变式练习--谁做得对?
3、应用练习
(1)计算体育馆天花板上平行四边形的面积。
(2)解决神州半岛的面积计算问题(课件出示神州半岛地形图,并给出数据)。指名口答。
4、拓展练习--小小设计师
学校教学楼前要建造一个面积是12平方米的平行四边形花坛,请你帮学校设计一下(要求它的底和高均为整米数),可以有几种方案?
(评析:通过不同层次的训练,不但巩固了所学知识,拓宽了学生的知识面,发展了学生的思维,培养了学生的应用意识,加深了学生对知识的内化和记忆,而且通过前后相呼应的教学情节,也体现了教学设计的完整性。)
五、反思一下刚才我们的学习过程,你有什么收获?
总评:
本设计最显着的特点是为学生活动留有了充足的时间和空间,确立了学生的主体地位。课之开始,借景勾通,拉近了"陌生"师生之间的情感距离,从而有效地调动了学生的主体欲望。课之展开,以体验为主线,为学生的研究活动提供了广阔的时空,学生在充足的时间里发现问题、提出问题、研究问题,实实在在地经历了有意义的"做数学"过程,使学生对所学知识不仅知其然,更知其所以然。并且在构建数学模型、知识动态生成的思维过程中,把数学方法作为进一步学习的基础,重视数学方法的训练,逐步形成良好的思维方式和运用数学的意识。课之巩固,既夯实"双基",又注重思维能力的培养。让学生在综合运用所学知识和技能解决问题中,形成解决问题的一些基本策略,发展了学生的应用意识、实践能力与创新精神。总之,整个教学过程本着以学生的发展为本的教学理念,让学生经历自主探究、独立思考、合作交流等活动,获得了成功的体验,锻炼了克服困难的意志,学生的学习积极性和主动性得到了充分地发挥,同时也树立了自信心。
平行四边形面积的计算教案 篇6
教学内容:人教版第十册第66-66页的内容,完成练习十六的第1-3题。
教学目标:
1、使学生能运用树方格、割补等方法探索平行四边形面积的计算公式,初步感受转化的思想。
2、让学生掌握平行四边形面积的计算公式,能够运用公式正确计算平行四边形的面积。
3、培养学生观察、分析、概括、推理能力,发展学生的空间观念。
4、培养学生的合作意识和探索创新精神。
教学重点:学生掌握平行四边形面积的计算公式,能够运用公式正确计算平行四边形的面积。
教学难点:探索、推导平行四边形面积的计算公式。
教具、学具准备:
教具:有关平行四边形面积计算的多媒体及课件、视频展示台。
学具:每组准备2-3个纸剪的平行四边形和一个近似的平行四边形。
教学过程:
一、复习引入。
1、课件出示长方形。提问:指出它各部分的名称,会求它的面积吗?只要量出它的什么的尺寸就能计算?
2、演示:把长方形拉成平行四边形。提问:这又是什么图形?它有什么特征?会求它的面积吗?
二、探索新知。
1、用数方格的方法计算平行四边形的面积。
同桌合作,讨论完成再汇报。
出示思考题:
(1)长方形的长是多少?宽是多少?面积是多少?
(2)平行四边形的面积是多少?
(3)比较图中平行四边形的底和长方形的长,发现了什么?
(4)比较图中平行四边形的高和长方形的'宽,发现了什么?
过渡:不数方格,能不能计算平行四边形的面积呢?我们来做个实验。
2、探索平行四边形面积的计算公式。
(1)小组动手操作,将平行四边形转化成长方形。小组合作时,教师巡视,参与指导。
(2)把有代表性的几组作品贴在黑板上。
思考:不论沿平行四边形的哪条高剪开,拼成的平行四边形与长方形都有关系?
学生回答,教师板书:
长方形的面积 = 长 × 宽
平行四边形的面积= 底 × 高
3、用字母表示平行四边形面积的计算公式。
(1)学生看书交流。
(2)教师板书:S=a×h
=a·h
=ah
3、要求平行四边形的面积,知道它的什么条件就可以了?
4、运用公式计算平行四边形的面积。
(1)出示例1
读题后让学生想:根据什么列式?对得数有什么要求?学生独立完成。
(3)完成第66页的"做一做"。
三、巩固练习。
1、练习十六第1题。
2、练习十六第3题。
四、全课总结。
1、这节课我们研究了一个什么问题?
2、怎样求平行四边形的面积?这个面积公式是怎样推导出来的?
3、小组评价。
五、作业。
练习十六第2、5题。
平行四边形面积的计算教案 篇7
教学内容:人教版第九册 64 – 67页
说教材: 教材先给出方格上的平行四边形和长方形,从数图形中的方格引出平行四边形的面积。利用数方格的方法来计算面积仍然是一种计算面积的方法。遇到图形中边与边之间有不成直角的情况时,该怎样计算面积,学生还没有学过。,教材通过数的方法,转化的方法,可以把新知识转化为旧知识,从而使新问题得到解决。
教学重点:平行四边形面积的推导过程。
本课采用的教法:自学法 、 转化方法、小组合作法、实验法。
学法:1、自主学习法
2、小组合作探究学习法。
教学程序:
一、创设问题情景, 为新课作铺垫。
请同学们帮李师傅的一个忙,
求出下面的面积,你是怎样想的?3厘米
5厘米
二、突出学生主体地位,发展学生的创新思维。
首先采用自学课本64页。师提出问题,通过自学,同学们发现了什么,想到了什么?你猜到了什么?
有的同学说:长方形面积与平行四边形面积相等(数出来的)。 有的说:我用割补的方法把平形四边形拼成一个长方形,长方形的面积与平行四边形面积相等。还 有的说:我发现平行四边形的底相当与长方形的长,平行四边形的高相当长方形的宽。 有的说:我猜想平行四边形的面积等于底乘高。通过同学们发现与猜想
三、小组合作,培养学生的合作精神。
小组合作交流,动手操作并说出你的'思考过程这样使学生能人人参与,个个思考。汇报交流结果(小组派出代表到前边演示操作过程边述说)学生甲:我沿着平行四边形的高剪下一个三角形补到平行四边形的右边,拼成一个长方形。长方形的长相当与平形四边形的底,宽相当与平行四边形的高。长方形面积与平行四边形的面积相等。我想平行四边形面积=底乘高
学生乙(与前边的内容大概相同复述一遍,就是平行四边形的高作在中间)
学生丁我还有一种方法,我将平行四边形沿着对角划一条线,分成两个面积相等三角形,虽然拼成还是一个原平行四边形。但学生争着说出与别人不同的方法,把自己的想法尽量展现在同学面前,其中不乏有闪光的思维亮点。
四例题独立完成,体现学生自己解决问题的能力。
例题自己解决, 学生切实体验到数学的应用价值,提高学生学习数学信心。
板书设计:
长方形面积==长乘宽
平行四边形面积=底乘高
s= a h
平行四边形面积的计算教案 篇8
教学目标:
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3.对学生进行辩诈唯物主义观点的启蒙教育.
教学重点:理解公式并正确计算平行四边形的面积.
教学难点:理解平行四边形面积公式的推导过程.
学具准备:每个学生准备一个平行四边形。
教学过程:
1、什么是面积?
2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?
二、导入新课
根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。
三、讲授新课
(一)、数方格法
用展示台出示方格图
1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)
2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的'。
2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?
:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法
1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
2、然后指名到前边演示。
3、教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
教师归纳:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。
5、引导学生平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)
6、教学用字母表示平行四边形的面积公式。
板书:S=a×h,告知S和h的读音。
说明在含有字母的式子里,字母和字母中间的乘号可以记作“”,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。
(6)完成第81页中间的“填空”。
7、验证公式
学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。
条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)
(四)应用
1、学生自学例1后,教师根据学生提出的问题讲解。
3、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等()
(2)平行四边形底越长,它的面积就越大()
4、做书上82页2题。
四、体验
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
五、作业
练习十五第1题。
六、板书设计
平行四边形面积的计算
长方形的面积=长×宽 平行四边形的面积=底×高
S=a×hS=ah或S=ah
课后反思:
平行四边形面积的计算教案 篇9
教学内容:
教科书数学第八册第22~26页
教学目标:
1.通过观察操作认识平行四边形的特征,使学生在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。
2.经历探索平行四边形面积计算公式的过程,使学生初步认识转化的思考方法在研究平行四边形面积时的运用。
3.培养观察、比较、推理和概括能力,渗透转化思想的空间观念。
教学重难点:
探索平行四边形面积计算公式的推导过程。
教具准备:
1.课件
2.教师准备一个平行四边形的纸片。
3.学生准备好学具
教学过程:
活动一:认识平行四边形的特征。
信息窗1,学生观察。
师:你发现了什么信息?你想提一个什么数学问题?学生以小组为单位讨论。
(生交流讨论的情况)
平行四边形的特征:对边平行且相等,对角相等。
师:什么叫平行四边形?(两组对边分别平行的四边形叫做平行四边形。)
师:先领学生复习平行四边形的底和高。再让学生指出平行四边形的底,指出它的高来。然后让每个学生在自己准备的平行四边形上画高。(教师巡视,注意画得是否正确。)
活动二:学习平行四边形面积的计算公式。
师:解决1号虾池的面积是多少。
我们已经知道1号虾池的形状是平行四边形的,要求1号虾池的面积,就是求平行四边形的面积,那么怎样求平行四边形的面积?请大家猜测一下。
学生活动:用手中的学具操作一下。
师:现在交流你们想出的方法。
师:同学们有各自的猜想,到底谁的对呢?用什么办法来验证。
师:哪个小组来汇报一下你们是怎样来验证的 ,你们的结论是什么?
提问:它们的面积怎么样?平行四边形的底和长方形的长怎么样?平行四边形的高和长方形的宽呢?
启发学生把比较的结果重复说一遍。平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。
通过操作总结平行四边形面积的计算公式。
(1)从上面的比较中,你发现平行四边形的.底、高和面积与长方形的长、宽和面积之间有什么联系?你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?让学生拿出准备好的平行四边形进行剪拼。(学生剪拼时,教师巡视。)然后指名到前边演示。
(2)教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在演示。
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。
引导学生总结平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底高。)
教学用字母表示平行四边形的面积公式。
板书:S=ah,
S=ah,或者S=ah。
应用总结出的面积公式计算平行四边形的面积。
师:现在来求:1号虾池的面积是多少?
学生列式:90X60=5400(平方米)
活动三:
解决2号虾池能放养多少尾虾苗?
交流答案,交流解题思路。
活动四:巩固练习
自主练习的1、2、5
活动五:
课堂小结:
这节课我们共同研究了什么?
怎样求平行四边形的面积?
平行四边形的面积计算公式是怎样推导出来的?
平行四边形面积的计算教案 篇10
一、创设情境,呈现真实
师:我们一起回忆一下,已经学过关于长方形的哪些知识?(出示长方形,并且让学生回忆有关它的周长和面积的知识)
师:今天我们来研究平行四边形的面积。这里有两个图形,请大家先测量有关数据,再计算它们的面积。(图略)
生活动后汇报如下:
长方形的长6厘米,宽4厘米,长方形的面积=6×4=24平方厘米
(1)平行四边形底6厘米,另一条底4厘米,它的面积=6×4=24平方厘米
(2)平行四边形底6厘米,高3厘米,它的面积=6×3=18平方厘米
二、否定错误猜想
1、师:计算同一个平行四边形的面积,大家有几种不同的想法,可以肯定其中必定有错误。请大家看清楚,每种猜想的意思,然后作出判断。
你觉得哪种更合理?能不能举个例子,证明哪种是错误的。
生:我觉得可以用底乘底来计算。我们知道平行四边形容易变形,如果把一条底边拉直,就变成了长方形,长方形的面积等于长乘宽,所以平行四边形的面积等于底乘底。
师:这位同学想到了平行四边形容易变形的特征。大家觉得有道理吗?
生:老师,我不同意这样的想法,按照他的说法,如果把这个平行四边形压扁,它的面积难道还是24平方厘米吗?
2、师:(演示平行四边形变形的过程)请同学们仔细观察,平行四边形在变形过程中,什么发生了变化?什么始终没变?
生:我发现平行四边形在变形过程中,面积边了,而两条边的长度始终不变。所以用“底乘底”计算平行四边形的面积是错误的'。
师:在平行四边形变形过程中,随着面积的变化,什么也同时发生了变化?(再次演示长方形渐变成平行四边形。)
生:(兴奋地)高!
师:现在,你觉得平行四边形的面积与它的什么有关?
生:我觉得平行四边形的面积与它的高有很大的关系。
3、师:用什么办法可以比较它们的面积大小呢?
生:把平行四边形多出来的三角形剪下来,补到另一边,看出长方形大,平行四边形小。
师:变成长方形后,面积大小变了没有?
生:没有
师:那么要计算平行四边形的面积,应该怎么办?
生:要求出平行四边形的面积,就知道长方形的面积,所以这个平行四边形的面积应是6乘3来计算,而不是6乘4。
生:6是长方形的长,也是平行四边形的底,3是拼成后的长方形的宽,也是平行四边形的高,所以第二种猜想是正确的。
师:这位同学把“计算平行四边形的面积”这个问题转化成了“计算长方形的面积”,利用旧知识解决了新问题。
三、归纳计算方法
师:是不是所有的平行四边形都可以剪拼成长方形呢?请同学们任意拿一个平行四边形,想一想,怎样可以把它转化成一个长方形。
根据学生反馈情况进行课件演示,出现几种拼法(略)
师:这几种剪拼方法有什么相同之处?
生:都是先沿着平行四边形底边上的高剪开,再拼成一个长方形。
生:在剪拼过程中,图形的形状变了,面积不变。
师:为什么平行四边形的面积可以用“底乘高”来计算?
生:因为长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,长方形面积等于长乘宽,所以平行四边形面积等于底乘高。
师:这个平行四边形公式是不是适用于所有的平行四边形呢?为什么?
生:对任何一个平行四边形,只要沿着底边上的高剪开,一定都可以拼成长方形,所以平行四边形的面积=底×高。
师:我们用S表示平行四边形的面积,用a表示底,用h表示高,那么计算平行四边形的面积公式用字母表示为S=ah。
四、反思探究过程
师:今天我们遇到了一个什么新问题?我们是怎样解决的?有什么收获?
平行四边形面积的计算教案 篇11
【教学内容】教材第134页复习第12~15题。
【教学目标】
【教学重点 掌握求平行四边形、三角形和梯形的面积计算公式,会进行面积单难点】位的换算。
【教学过程】
一、揭示课题
我们今天复习平行四边形、三角形和梯形面积的计算以及土地面积的有关知识。通过复习使学生进一步理解和掌握求平行四边形、三角形和梯形的面积计算,会进行土地面积计算和面积单位间的换算。
二、复习面积单位
1、(1)我们学过哪些面积单位?并按一定州顺序排列。
(2)每相邻两个面积单位间的进率各是多少?
2、练习做期末复习第12题。
学生做,并说计算过程。
三、复习平行四边形、三角形和梯形的面积计算及其联系
1、说一说这三种图形面积计算公式是什么?并说一说每个图形的面积是怎样推导出来的?
2、我们在学习平行四边形、三角形和梯形面积的计算时,都是把它们变成已学过的图形,这种学习方法叫做什么?(转化),以后学习其他图形的面积时,还是要用到这种方法。
3、把长方形、正方形、平行四边形、三角形和梯形之间的联系
用图表示出来。
(1) 学生画图:
(2)从图上可以看出,谁的'面积是基础?
4、(1)练习做期末复习第14题。
学生计算后反馈。
(2)填空:
①一个三角形和一个平行四边形等底等高,如果三角形的面积是60平方米,那么平行四边形面积是( )平方米;如果平行四边形面积是60平方米,那么三角形的面积是( )平方米。
②一个三角形底不变,高扩大3倍,面积( )倍。
③一个平行四边形底扩大16倍,高缩小2倍,面积就( )倍。
(3)应用题练习,期末复习第15题。
注意第(2)题单位不统一,先统一单位后再解答。
四、复习土地面积单位
1、(1)计算土地面积常用的单位有哪些?
(2)1平方千米,1公顷各有多大?
(3)测量土地时,一般用什么作长度单位?算出面积是多少平方米后,再换算成公顷或平方千米。
2、应用题:
(1)一个平行四边形果园,占地3公顷,它的底是400米,高是多少米?
学生做完后,师问:这题要注意什么?
(2)一个梯形的小麦田,上底长200米,下底长400米,高600米,它的面积是多少公顷?如果每公顷收小麦6000千克,这块小麦田能收小麦多少吨?
反馈时,说明最后结果单位要统一成吨。
3、综合练习:做期末复习第13题。
在书上做并说明理由。
五、全课总结
这节课复习了什么内容?我们复习了面积计算。进一步知道通过图形的转化,可以推导出平等四边形、三角形和梯形的面积计算公式,并且按它们面积计算公式可以分别计算出这些图形的面积是多少。
【作业设计】
补充
1、判断:
(1)两个完全一样的直角三角形能拼成平行四边形。( )
(2)两个面积相等的三角形一定等底等高。 ( )
(3)62=62=12。 ( )
(4)40公顷4平方千米。( )
2、一块平行四边形棉田,底400米,是高的2倍,共收籽棉8000千克,平均每公顷收籽棉多少克?
3、体育组跳箱的一面是梯形,它的上底是8分米,下底是1米,高11分米。求这个梯形的面积是多少平方分米?
平行四边形面积的计算教案 篇12
重点难点
1、在学生理解的基础上掌握平行四边形面积计算公式,能正确地计算平行四边形的面积。
2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法在研究平行四边形面积时的运用。
3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:理解并掌握平行四边形的面积公式
教学难点:理解平行四边形面积公式的推导过程
教学准备(含资料辑录或图表绘制)
板书设计
平行四边形面积的计算
转化
已学过的图形新图形
割补、剪拼
因为长方形的面积=长×宽
所以平行四边形的面积=底×高
学生活动
一、导入
二、新授
1、说出学过的平面图形。
2、在这些图形中,哪些图形的面积你会求?
3、(1)出示例1中的第1组图
要求:下面的两个图形面积是否相等?在小组里说一说你准备怎样比较这两个图形的面积。(学生分组活动后组织交流)
(2)出示例1中的第2组图
要求:不用刚才的方法还能比较这两个图形的`大小吗?(学生交流,教师适当强调“转化”的方法。)
(3)揭示课题:
师:今天我们运用已学过有关知识运用转化的数学思想来研究新图形的面积计算公式。今天我们来研究“平行四边形面积的计算”。(板书课题)
(1)出示一个平行四边形
师:你能想办法把这个平行四边形转化成学过的图形吗?
(2)学生操作,教师巡视指导。
(3)学生交流操作情况
第一种:
①沿着平行四边形的高剪下左边的直角三角形。
②把这个三角形向右平移。
③到斜边重合。
第二种:
①沿着平行四边形的任意一条高将其剪为两个梯形。
②把左侧的梯形向右平移。
三角形、长方形、正方形、平行四边形、梯形......
长方形、正方形
把他们移动一下
把左边部分剪下移到右边
三、延伸
四、练习
③道斜边重合。
(4)教室用课件进行演示并小结。
师:沿着平行四边形的任意一条高剪开,再通过平移,都可以把平行四边形转化成一个长方形。
(5)小组讨论:
①转化后长方形的面积与原平行四边形面积相等吗?
②长方形的长与平行四边形的底有什么关系?
③长方形的宽与平行四边形的高有什么关系?
(6)学生总结,形成下面的板书:
长方形的面积=长X宽
平行四边形的面积=底X高
(1)提问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第123页上任选一个平行四边形剪下来,先把它转化成长方形,再求出面积并填写下表。
(2)学生操作,反馈交流。
(3)用字母表示面公式:S=ah(板书)
1、指导完成试一试:明确应用公式求平
相等
相等
相等
五、总结
六、课堂作业
行四边形的面积一般要有两个条件,即底和高。
2、指导完成练一练:强调底和高的对应关系。
通过今天的学习有哪些收获?
回顾所学,感知收获
平行四边形面积的计算教案 篇13
教学要求:
1.使学生在理解的基础上掌握平行四边形、三角形和梯形的面积计算公式,能够计算它的面积。
2.使学生初步学会使用简单的测量工具测定直线和沿着直线测量指定的距离;了解步测和目测的方法,能够计算常见的规则形状的土地面积。
教学重点:
1.引导学生运用转化的方法;在动手操作的基础上掌握三角形、平行四边形和梯形面积的计算公式;能正确地应用各种图形面积的计算公式,求它们的面积和解决有关面积的实际问题。
2.使学生认识常用的测量工具及其用途;掌握测定直线和沿直线测量指定距离的步骤和方法;初步学会测定直线和沿着直线测量指定的距离;了解步测和目测的方法,初步学会步测和目测。
3.使学生能够正确计算常见的规则形状的土地面积,并会解决有关土地面积的实际问题。
教学难点:
1.使学生知道三角形、平行四边形和梯形面积公式的推导过程;掌握各图形面积的计算公式并能灵活地应用它们解决有关面积的实际问题。
1.使学生初步掌握用简单的测量工具测定直线和沿着直线,测量指定距离的方法。
1.平行四边形面积的计算
第一课时
教学内容:平行四边形面积的计算(例题和做一做,练习十七第13题。)
教学要求:
1.使学生理解并掌握平行四边形面积的计算公式,能正确地计算平行四边形的面积。
2.通过操作,进一步发展学生思维能力。培养学生运用转化的方法解决实际问题的能力发展学生的空间观念。
3 . 引导学生运用转化的思想探索规律。
教学重点:理解并掌握平行四边形面积的计算公式。
教学难点:理解平行四边形面积计算公式的推导过程。
教学过程:
一、激发
1.提问:怎样计算长方形面积?
板书:长方形面积=长宽
2.口算出下面各长方形的面积。
(1)长1。2厘米,宽3厘米。
(2)长0。5米,宽0。4米。
3.出示方格纸上画的平行四边形,提问:这是什么图形?什么叫平行四边形?指出它的底和高。
4.揭题:我们已经学会了长方形面积的计算,平行四边形的面积该怎样计算呢?这节课我们就学习平行四边形面积的计算(板书课题:平行四边形面积的计算)
二、尝试
1.用数方格的方法计算平行四边形面积。
(1)请大家打开书64页(指名读第2段)。
(2)指名到投影上数。边数边讲解:我先数,它是平方厘米;再数,它是平方厘米;两部分合起来是平方厘米。
(3)投影出示长方形。提问:数一数,这个长方形的长是多少?宽是多少?怎样计算它的面积。
(4)观察比较两个图形的关系,提问:你发现了什么?
引导学生明确:平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。
2.通过操作,将平行四边形转化成长方形。
(1)自由剪、拼,进一步感知。
①每个平行四边形只准剪一下,试一试被剪下的两部分能拼成已学过的什么图形?学生自己剪、拼。
②互相讨论。提问:你发现了什么规律?
通过操作讨论得出:只有沿着平行四边形的高剪开,才能拼成一个我们会计算的图形长方形。这种剪法最简便。
(2)揭示转化规律
任何一个平行四边形都可以转化成一个长方形,在转化的过程中,怎样按照一定的规律来做呢?(教师边演示边讲述)
①沿着平行四边形的高剪下左边的直角三角形。(出示剪刀,闪动被剪掉的部分)。
②左手按住右手的梯形,右手抽拉剪下的直角三角形,沿着底边慢慢向右移动,直到两斜边重合为止。这样就得到一个长方形。
③学生根据刚才的演示模仿操作,体会平移的过程。
3.归纳总结公式
(1)比较变化前的两个图形,提问:你发现了什么?互相讨论,汇报讨论结果。根据讨论结果完成填空。
引导学生明确:你发现了什么?互相讨论,汇报讨论结果。
①平行四边形转化为长方形后,面积没有改变。即长方形面积等于平行四边形面积。(同时板书)
②这个长方形的长、宽分别与平行四边形的底、高相等。(同时板书)
(2)根据这些关系,你认为平行四边形的面积计算公式怎样推导出来?强化理解推导过程。
板书:平行四边形的面积=底高
4.教学字母公式
(1)介绍每个字母所表示的意义及读法。板书S=ah
(2)说明在含有字母的式子里,字母和字母中间的乘号可以记作,也可以省略不写。所以平行四边形面积的计算公式可以写成S=ah或S=ah。(同时板书)
(3)提问:计算平行四边形面积,需要知道哪些条件?
三、应用
1.P66页例题:一块平行四边形钢板(如下图),它的面积是多少?(得数保留整数)
3.5厘米
4.8厘米
①读题,理解题意。
②学生试做,指名板演。提醒学生注意得数保留整数。
③订正。提问:根据什么这样列式?
2.完成P.72页做一做第1、2题。
订正时提问:计算时注意哪些问题?
3.填空
任意一个平行四边形都可以转化成一个,它的面积与原平行四边形的'面积。这个长方形的长与原平行四边形的相等。这个长方形的与原平行四边形的相等。因为长方形的面积等于,所以平行四边形的面积等于。
4.判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等
(2)平行四边形底越长,它的面积就越大
5.你能求出下列图形的面积吗?如果能,请计算出面积。(单位:厘米)
162015
20
6.练习十七第3题
四、体验
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
五、作业
练习十六节第2题。
第二课时
教学内容:平行四边形面积计算的练习(P。74~75页练习十七第4~9题。)
教学要求:
1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。2.养成良好的审题习惯。
教学重点:运用所学知识解答有关平行四边形面积的应用题。
教学过程:
一、基本练习
1.口算。(练习十六第4题)
4。90。75。4+2。640。250。87-0。49
530+2703。50。2542-98612
2.平行四边形的面积是什么?它是怎样推导出来的?
3.口算下面各平行四边形的面积。
⑴底12米,高7米;
⑵高13分米,第6分米;
⑶底2。5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
⑴生独立列式解答,集体订正。
⑵如果问题改为:每公顷可收小麦7000千克,这块地共可收小麦多少千克?①必须知道哪两个条件?
②生独立列式,集体讲评:
先求这块地的面积:25078010000=1。95公顷,
再求共收小麦多少千克:70001。95=13650千克
⑶如果问题改为:一共可收小麦58500千克,平均每公顷可收小麦多少千克?又该怎样想?
与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500(250781000)
⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.练习十七第6题:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?
1.6厘米
2.5厘米
⑴你能找出图中的两个平行四边形吗?
⑵他们的面积相等吗?为什么?
⑶生计算每个平行四边形的面积。
⑷你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)
3.练习十七第10题:已知一个平行四边形的面积和底,(如图),求高。
28平方米
7米
分析与解:因为平行四边形的面积=底高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习
练习十六第7题。
四、作业
练习十六第5、8、9、11题。
平行四边形面积的计算教案 篇14
教学目标
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3.对学生进行辩诈唯物主义观点的启蒙教育.
教学重点
理解公式并正确计算平行四边形的面积.
教学难点
理解平行四边形面积公式的推导过程.
教学过程
复习引入
(一)拿出事先准备好的长方形和平行四边形.量出它的长和宽(平行四边形量出底和高).
(二)观察老师出示的几个平行四边形,指出它的底和高.
(三)教师出示一个长方形和一个平行四边形.
1.猜测:哪一个图形面积比较大?大多少平方厘米呢?
2.要想我们准确的.答案,就要用到今天所学的知识——“平行四边形面积的计算”
板书课题:平行四边形面积的计算
二、指导探究
(一)数方格方法
1.小组合作讨论:
(1)图上标的厘米表示什么?每个小方格表示1平方厘米为什么?
(2)长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米?
(3)用数方格的方法,求出平行四边形的面积?(不满一格的,都按半格计算)
(4)比较平行四边形的底和长方形的长,再比较平行四边形的高和长方形的宽,你发现了什么?
2.集体订正
3.请同学评价一下用数方格的方法求平行四边形的面积.
学生:麻烦,有局限性.
(二)探索平行四边形面积的计算公式.
1.教师谈话
不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看.
2.学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的.
3.学生到前面演示转化的方法.
4.演示课件:平行四边形的面积
5.组织学生讨论:
(1)平行四边形和转化后的长方形有什么关系?
(2)怎样计算平行四边形的面积?为什么?
(3)如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的字母公式是什么?
(三)应用
例1.一块平行四边形钢板,它的面积是多少?(得数保留整数)
4.8×3.5≈17(平方米)
答:它的面积约是17平方米.
三、质疑小结
今天你学到了哪些知识?怎样计算平行四边形面积?
四、巩固练习
(一)列式并计算面积
1.底=8厘米,高=5厘米,
2.底=10米,高=4米,
3.底=20分米,高=7分米
(二)说出下面每个平行四边形的底和高,计算它们的面积.
(三)应用题
有一块地近似平行四边形,底是43米,商是20.1米,这块地的面积约是多少平方米?(得数保留整数)
(四)量出你手里平行四边形学具的底和高,并计算出它的面积.
教案点评:
该教学设计在学习面积的计算过程中,引导学生进行大胆猜想,提出假设,放手让学生去实践,把学生推到了课堂教学活动的主体地位,用科学的方法去验证假设,使学生学到了解决问题的方法,同时培养了学生的逻辑思维和动手操作的能力。
【平行四边形面积的计算教案】相关文章:
《面积计算》教案06-14
长方形面积的计算教案06-26
《平行四边形面积的计算》教学反思04-14
平行四边形面积教案02-09
平行四边形的面积教案06-18
《平行四边形的面积》教案06-23
《平行四边形的面积》教案03-02
《平行四边形的面积》教案(精选25篇)10-25
平行四边形面积教案(15篇)03-09