二元一次方程教案

时间:2024-07-27 08:31:14 教案 我要投稿

二元一次方程教案

  作为一名辛苦耕耘的教育工作者,编写教案是必不可少的,教案是教学蓝图,可以有效提高教学效率。那么大家知道正规的教案是怎么写的吗?以下是小编为大家收集的二元一次方程教案,欢迎阅读与收藏。

二元一次方程教案

二元一次方程教案1

  教学目标

  1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。

  2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型20xx年-20xx学年七年级数学下册全册教案(人教版)20xx年-20xx学年七年级数学下册全册教案(人教版)。

  3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。

  教学重点

  1.列二元一次方程组解简单问题。

  2.彻底理解题意

  教学难点

  找等量关系列二元一次方程组。

  教学过程

  一、情境引入。

  小刚与小玲一起在水果店买水果,小刚买了3千克苹果,2千克梨,共花了18.8元。小玲买了2千克苹果,3千克梨,共花了18.2元。回家路上,他们遇上了好朋友小军,小军问苹果、梨各多少钱1千克?他们不讲,只讲各自买的几千克水果和总共的钱,要小军猜。聪明的同学们,小军能猜出来吗?

  二、建立模型。

  1.怎样设未知数?

  2.找本题等量关系?从哪句话中找到的`?

  3.列方程组。

  4.解方程组。

  5.检验写答案。

  思考:怎样用一元一次方程求解?

  比较用一元一次方程求解,用二元一次方程组求解谁更容易?

  三、练习。

  1.根据问题建立二元一次方程组。

  (1)甲、乙两数和是40差是6,求这两数。

  (2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。

  (3)已知关于求x、y的方程,

  是二元一次方程。求a、b的值。

  2.P38练习第1题。

  四、小结。

  小组讨论:列二元一次方程组解应用题有哪些基本步骤?

  五、作业。

  P42。习题2.3A组第1题。

  后记:

  2.3二元一次方程组的应用(2)

二元一次方程教案2

  教学目标

  1.使学生会用加减法解二元一次方程组。

  2.学生通过解决问题,了解代入法与加减法的共性及个性。

  重点:探寻用加减法解二元一次的方程组的进程。

  难点:消元转化的过程

  教学方法:讲练结合、探索交流课型新授课教具投影仪

  教师活动:学生活动

  情景设置:

  小明买了两份水果,一份是3kg苹果、2kg香蕉,共用去13.2元;另一份是2kg苹果、5kg香蕉,共用去19.8元。设苹果x元/kg,香蕉y元/kg.列出方程。

  新课讲解:

  列出方程组

  1.解方程组

  分析:关键的出方程〈1〉中的2y与方程〈2〉中的-2y互为相反数。想象出如果相加两个方程,会是什么结果?

  板演:

  解:〈1〉+〈2〉得:

  4x=6

  x=

  把x= 代入〈1〉得

  +2y=1

  解出这个方程,得

  y=

  所以原方程组的解是

  2.解方程组

  通过议一议,让学生都有感觉消去含x或y的`项都可以,但哪个更简便?

  解:〈1〉 3,得

  15x-6y=12 〈3〉

  〈2〉 2,得

  4x-6y=-10 〈4〉

  〈3〉-〈4〉,得

  11x=22

  x=2

  将x=2代入〈1〉,得

  5 2-2y=4

  y=3

  所以原方程组的解是

  加减消元法:把方程组的两个防城(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程。

  练一练:

  解方程组

  小结:

  加减消元法关键是如何消元,化二元为一元。

  先观察后确定消元。

  教学素材:

  A组题:解下列方程组:

  (1)

  (2)

  (3)

  (4)

  (5)

  B组题:运用转化的思想方法,你能解下面的三元一次方程组吗?

  (1)

  (2)

  学生读题,议一议

  学生想一想,如感到困难则看道简单题。

  由学生观察,如何求出x,y的值,学生再讨论。

  试一试。学生口述。

  老师板演

  得到一元一次方程

  学生再观察,议一议

  ①消去哪个未知数

  ②怎样消去?

  P112 1(1)(2)(3)(4)

  作业习题11.3 P112 1(3)(4) 3 , 4

二元一次方程教案3

  教学目标:

  通过学生积极思考,互相讨论,经历探索事物之间的数量关系,形成方程模型,解方程和运用方程解决实际问题的过程进一步体会方程是刻划现实世界的有效数学模型

  重点:

  让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题

  难点:

  寻找等量关系

  教学过程:

  看一看:课本99页探究2

  问题:1“甲、乙两种作物的.单位面积产量比是1:1、5”是什么意思?

  2、“甲、乙两种作物的总产量比为3:4”是什么意思?

  3、本题中有哪些等量关系?

  提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?

  思考:这块地还可以怎样分?

  练一练

  一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:

  农作物品种每公顷需劳动力每公顷需投入奖金

  水稻4人1万元

  棉花8人1万元

  蔬菜5人2万元

  已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?

  问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?

  教材106页:探究3:如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。公路运价为1、5元/(吨?千米),铁路运价为1、2元/(吨?千米),这两次运输共支出公路运费15000元,铁路运费97200元。这批产品的销售款比原料费与运输费的和多多少元?

二元一次方程教案4

  教学目标

  1、进一步经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;

  2、会用列表的方式分析问题中所蕴涵的数量关系,列出二元一次方程组;

  3、培养分析问题、解决问题的能力,进一步体会二元一次方程组的应用价值.

  教学难点

  借助列表分问题中所蕴含的数量关系。

  知识重点

  用列表的方式分析题目中的各个量的关系。

  教学过程

  (师生活动)设计理念

  创设情境最近几年,全国各地普遍出现了夏季用电紧张的局面,为疏导电价矛盾,促进居民节约用电、合理用电,各地出台了峰谷电价试点方案.

  电力行业中峰谷的含义是用山峰和山谷来形象地比喻用电负荷特性的变化幅度一般白天的用电比较集中、用电功率比较大,而夜里人们休息时用电比较小,所以通常白天的用电称为是高峰用电,即8:00~22:00,深夜的用电是低谷用电即22:00~次日8:00.若某地的高峰电价为每千瓦时0.56元;低谷电价为每千瓦时。.28元.八月份小彬家的总用电量为125千瓦时,总电费为49元,你知道他家高峰用电量和低谷用电量各是多少千瓦时吗?

  学生独立思考,容易解答.以一道生活热点问题引入,具有现实意义.激发学生学习兴趣,同时培养学生节约、合理用电的意识.

  理解题意是关健.通过该题,旨在培养学生的读题能力和收集信息能力.

  探索分析

  解决问题(出示例题)如图,长青化工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.公路运价为1.5元(吨·千米),铁路运价为1.2元(吨·千米),这两次运输共支出公路运费15000元,铁路运费97200元.这批产品的销售款比原料费与运输费的和多多少元?

  (图见教材115页,图8.3-2)

  学生自主探索、合作交流.

  设问1.如何设未知数?

  销售款与产品数量有关,原料费与原料数量有关,而公路运费和铁路运费与产品数量和原料数量都有关.因此设产品重x吨,原料重y吨.

  设问2.如何确定题中数量关系?

  列表分析

  产品x吨

  原料y吨

  合计

  公路运费(元)

  铁路运费(元)

  价值(元)

  由上表可列方程组

  解这个方程组,得

  因为毛利润-销售款-原料费-运输费

  所以这批产品的销售款比原料费与运输的和多1887800元.

  引导学生讨论以上列方程组解决实际问题的

  学生讨论、分析:合理设定未知数,找出相等关系。本例所涉及的数据较多,数量关系较为复杂,具有一定挑战性,能激发学生探索的热情.

  通过讨论让学生认识到合理设定未知数的愈义.

  借助表格辅助分析题中较复杂的数量关系,不失为一种好方法.

  课堂练习

  反馈调控某瓜果基地生产一种特色水果,若在市场上每吨利润为1000元;经粗加工后销售,每吨利润增为4500元;经精加工后销售,每吨利润可达7500元。一食品公司

  购到这种水果140吨,准备加工后上市销售.该公司的`加工能力是:每天可以精加工6吨或者粗加工16吨,但两种加工方式不能同时进行.受季节等条件限制,公司必须将这批水果全部销售或加工完毕,为此公司研制二种可行的方案:

  方案一:将这批水果全部进行粗加工;

  方案二:尽可能多对水果进行精加工,没来得及加工的水果在市场上销售;

  方案三:将部分水果进行精加工,其余进行粗加工,并恰好15天完成.

  你认为选择哪种方案获利最多?为什么?

  学生合作讨论完成

  选择经济领城问题让学生展开讨论,增强市场经济意识和决策能力,同时巩固二元一次方程组的应用.

  小结与作业

  小结提高1、在用一元一次方程组解决实际问题时,你会怎样设定未知数,可借助哪些方式辅助分析问题中的相等关系?

  2、小组讨论,试用框图概括“用一元一次方程组分析和解决实际问题”的基本过程.

  学生思考、讨论、整理.

  这是第一次比较完整地用框图反映实际问题与二元一次方程组的关系.

  让学生结合自己的解题过

  程概括整理,帮助理解,培养模

  型化的思想和应用数学于现实

  生活的意识.

  布置作业16、必做题:教科书116页习题8.3第2、6题。

  17、选做题:教科书117页习题8.3第9题。

  18、备19、选题:

  (1)一批蔬菜要运往某批发市场,菜农准备租用汽车公司的甲、乙两种货车.已知过去两次租用这两种货车的记录如下表所示.

  甲种货车(辆)乙种货车(辆)总量(吨)

  第1次

  4528.5

  第2次

  3627

  这批蔬菜需租用5辆甲种货车、2辆乙种货车刚好一次运完,如果每吨付20元运费,问:菜农应付运费多少元?

  (2)某学校现有学生数1290人,与去年相比,男生增加20%,女生减少10%,学生总数增加7.5%,问现在学校中男、女生各是多少?

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  本课探究的问题信息量大,数量关系复杂,未知数不容易设定,对学生来说是一种挑战,因此安排学生合作学习.学生先独立思考,自主探索,然后在小组讨论中合理设定未知数,借助表格分析题中的数量关系,列出方程组求得问题的解.在本节的小结中,让学生结合自己的解题过程概括整理实际问题与二元一次方程组的关系,并比较完整地用框图反映,培养模型化的思想.

  同时本节向学生提供了社会热点问题、经济问题等现实、具有挑战性的、富有数学意义的学习素材,让学生展开数学探究,合作交流,树立数学服务于生活、应用于生活的意识.

二元一次方程教案5

  教学目标

  知识与技能

  掌握二元一次方程和二元一次方程组及它们的解的概念,会用消元法解方程组。

  过程与方法

  能根据方程组的特点选择合适的方法解方程组;并能把相应问题转化为解方程组

  情感、态度与价值观

  培养学生分析问题,解决问题的能力,体验学习数学的快乐。

  重点:

  掌握二元一次方程和二元一次方程组及它们的解的概念,会用消元法解方程组。

  难点:

  选择合适的方法解方程组;并能把相应问题转化为解方程组。

  教学手段

  多媒体,小组评比。

  教学过程

  一、知识梳理

  以小组为单位讨论二元一次方程组已经学了哪些知识?

  1、什么是二元一次方程?什么是二元一次方程的解?

  2、什么是二元一次方程组?什么是二元一次方程组的解?

  3、解二元一次方程组的基本思想是什么?消元的方法有哪些?

  设计意图:知识回顾,掌握知识要点,为顺利完成练习打下基础

  二、基础训练

  教学手段与方法:每小组必答题,答对为小组的一分,调动学习的'积极性。

  设计意图:

  基础知识达标训练。

  教学手段与方法:

  毎小组选代表讲解为小组加分,充分调动学生的积极性。学生讲解不到位的老师补充。

  设计意图:

  对二元一次方程组解法的灵活应用。

二元一次方程教案6

  教学目标

  1.知识与能力目标

  (1)二元一次方程和一次函数的关系。

  (2)二元一次方程组的图象解法。

  (3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。

  2.情感态度价值观目标

  通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。

  教材分析

  前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。

  教学重点

  1、二元一次方程和一次函数的关系。

  2、能根据一次函数的图象求二元一次方程组的近似解。

  教学难点

  方程和函数之间的对应关系即数形结合的意识和能力。

  教学方法

  学生操作——————自主探索的方法

  学生通过自己操作和思考,结合新旧知识的联系,自主探索出方程与图象之间的对应关系,以引入二元一次方程组的图象解法,同时也建立了“数”————二元一次方程组和“形”————函数的图象(直线)之间的对应关系,培养了学生数形结合的意识和能力。

  教学过程

  一. 故事引入

  迪卡儿的故事——————蜘蛛给予的启示

  十七世纪法国数学家迪卡儿有一次生病卧床,他看见屋顶上的一只蜘蛛顺着丝左右爬行。迪卡儿看到蜘蛛的“表演”猛的机灵一动。他想,可以把蜘蛛看成一个点,它可以上、下、左、右运动,能不能把蜘蛛的位置用一组数确定下来呢?

  在蜘蛛爬行的启示下,迪卡儿创建了直角坐标系,在坐标系下几何图形(形)和方程(数)建立联系。迪卡儿坐标系起到了桥梁和纽带的作用。从而我们可以把图形化成方程来研究,也可以用图象来研究方程。

  这节课我们就来研究二元一次方程(数)与一次函数(形)的关系。

  二. 尝试探疑

  1、Y=x+1

  你们把我叫一次函数,我也是二元一次方程啊!这是怎么回事,你知道吗?

  学生先是疑惑:方程就是方程,函数就是函数,它们能有什么联系呢?然后通过思考、交流,最后恍然大悟。初步感受一次函数与二元一次方程的内在联系。

  2、函数y=x+1上的任意一点的坐标是否满足方程x—y=—1?

  以方程x—y=—1的解为坐标的点在不在函数y=x+1 的图象上?方程x—y=—1与函数y=x+1有何关系?

  学生会迫不及待地拿起笔来计算。从函数y=x+1图象上找几个点看它们的坐标是否满足方程x—y=—1。结果都满足。然后学生就会自主和同伴交流,问一问同伴函数y=x+1图象上的点满足不满足方程x—y=—1。结果也都满足。这样他们就会搭成共识:函数y=x+1上的任意一点的坐标都满足方程 x—y=—1。

  然后学生会用同样的方法得出另一个结论:以方程x—y=—1的解为坐标的'点一定在函数y=x+1的图象上。然后开始思索函数y=x+1和方程x—y=—1到底有何关系呢?通过交流自动得出结论:以方程x—y=—1的解为坐标的点组成的图象与一次函数y=x+1的图象相同。

  3。在同一坐标系下,化出y=x+1与y=4x—2的图象,他们的交点坐标是什么?

  方程组y=x+1的解是什么?二者有何关系?

  y=4x—2

  学生根据画图象的方法画出两函数图象,画出交点坐标。用消元法解出方程组的解。学生会大吃一惊:两者出奇地相近或者干脆就相同。这是怎么回事呢?然后开始探究二者关系。通过交流、讨论得出结论:函数y=x+1和y=4x—2的交点坐标就是由两个函数表达式组成的方程组

  y=x+1 的解。

  Y=4x—2

  教师作最后总结:因为函数和方程有以上关系,所以我们就可以用图象法解决方程问题,也可以用方程的方法解决图象问题。

  三. 方程与函数关系的应用

  解方程组 x—2y=—2

  2x—y=2

  学生会很快的用消元法解出来。

  老师发问:谁还有其他的方法?如果有,鼓励学生大胆提出。并给予口头表扬。如果没有人用其他的方法,老师提出问题:你能不能用图象的方法求方程组的解呢?这时,学生就会去探索新的思路、方法。

  一回忆方程与函数的关系,有了!方程组的解不就是两个方程变形得到的两个函数图象的交点坐标吗?学生就会迅速动笔用这种方法把方程解出来。作完之后,互相交流。学生总结一下做题步骤:

  1。把两个方程都化成函数表达式的形式。

  2。画出两个函数的图象。

  3。画出交点坐标,交点坐标即为方程组的解。

  问题又出来了,有的同学的解是 x=2 有的同学的解是 x=2。1 y=2。1

  y=1。9 有的同学的解是……虽然都和消元法得到的结果相近,但各不相同。

  老师提问:你能说一下用图象法解方程组的不足吗?

  学生争先恐后的回答:用这种方法求的解是近似值。不准确。学生提出疑问:既然不准确,那学习它有什么用呢?用消元法就足够了!

  教师解释一下:在现实生活和生产中,我们会遇到特别复杂的方程,用消元法解不太容易,我们就可以用电脑绘制成函数图象,很容易找出交点坐标。教师可以用Z+Z智能教育平台演示一下。

  [点评]用作图象的方法解方程组,这体现了两个知识点的内在联系。学数学知识,探索知识点之间的联系,可起到化新为旧的作用,达到事半功倍的效果。逐步让学生学会这种学习新知识的技巧。

  四. 引申

  方程组 x+y=2

  x+y=5 解的情况如何?你能从函数的角度解释一下吗?

  学生用消元法开始解方程组,结果无解,怎么回事呢?学生会尝试运用方程组的图象解法。画出两个函数图象。答案有了!图象是平行的,没有交点。所以方程组无解了。哇!太神奇了!方程的问题可以用图象的方法解决了。

  [点评]因为有了上面的用作图象法解方程组,在这里,学生就会自觉地从函数的角度探究方程的问题,初步具有了数形结合的意识和能力。

  五. 课后小结

  本节课我们通过操作和思考,揭示了二元一次方程和函数图象之间的对应关系,从而引入二元一次方程组的图象解法,同时也建立了“数”————二元一次方程与“形”——————函数图象之间的对应关系,培养了学生初步的数形结合的意识和能力。

  六. 作业

  1。用作图象法解方程组2x+y=4

  2x—3y=12

  2。如图,直线L、L相交于点 A,试求出A点坐标。

二元一次方程教案7

  教学目标

  1.使学生会用代入消元法解二元一次方程组;

  2.理解代入消元法的基本思想体现的“化未知为已知”,“变陌生为熟悉”的化归思想方法;

  3.在本节课的教学过程中,逐步渗透朴素的辩证唯物主义思想。

  教学重点和难点

  重点:用代入法解二元一次方程组。

  难点:代入消元法的基本思想。

  课堂教学过程设计

  一、从学生原有的认知结构提出问题

  1.谁能造一个二元一次方程组?为什么你造的方程组是二元一次方程组?

  2.谁能知道上述方程组(指学生提出的方程组)的解是什么?什么叫二元一次方程组的解?

  3.上节课我们提出了鸡兔同笼问题:(投影)一个农民有若干只鸡和兔子,它们共有50个头和140只脚,问鸡和兔子各有多少?设农民有x只鸡,y只兔,则得到二元一次方程组

  对于列出的.这个二元一次方程组,我们如何求出它的解呢?(学生思考)教师引导并提出问题:若设有x只鸡,则兔子就有(50-x)只,依题意,得2x+4(50-x)= 140从而可解得,x=30,50-x=20,使问题得解。

  问题:从上面一元一次方程解法过程中,你能得出二元一次方程组串问题,进一步引导学生找出它的解法)

  (1)在一元一次方程解法中,列方程时所用的等量关系是什么?

  (2)该等量关系中,鸡数与兔子数的表达式分别含有几个未知数?

  (3)前述方程组中方程②所表示的等量关系与用一元一次方程表示的等量关系是否相同?

  (4)能否由方程组中的方程②求解该问题呢?

  (5)怎样使方程②中含有的两个未知数变为只含有一个未知数呢?(以上问题,要求学生独立思考,想出消元的方法)结合学生的回答,教师作出讲解。

  由方程①可得y=50-x③,即兔子数y用鸡数x的代数式50-x表示,由于方程②中的y与方程①中的y都表示兔子的只数,故可以把方程②中的y用(50-x)来代换,即把方程③代入方程②中,得2x+4(50-x)=140,解得x=30。

  将x=30代入方程③,得y=20。

  即鸡有30只,兔有20只。

  本节课,我们来学习二元一次方程组的解法。

  二、讲授新课例1解方程组

  分析:若此方程组有解,则这两个方程中同一个未知数就应取相同的值。因此,方程②中的y就可用方程①中的表示y的代数式来代替。解:把①代入②,得3x+2(1-x)=5,3x+2-2x=5,所以x=3。把x=3代入①,得y=-2。

  (本题应以教师讲解为主,并板书,同时教师在最后应提醒学生,与解一元一次方程一样,要判断运算的结果是否正确,需检验。其方法是将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等。检验可以口算,也可以在草稿纸上验算)教师讲解完例1后,结合板书,就本题解法及步骤提出以下问题:

  1.方程①代入哪一个方程?其目的是什么?

  2.为什么能代入?

  3.只求出一个未知数的值,方程组解完了吗?

  4.把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简便?在学生回答完上述问题的基础上,教师指出:这种通过代入消去一个未知数,使二元方程转化为一元方程,从而方程组得以求解的方法叫做代入消元法,简称代入法。例2解方程组

  分析:例1是用y=1-x直接代入②的。例2的两个方程都不具备这样的条件(即用含有一个未知数的代数式表示另一个未知数),所以不能直接代入。为此,我们需要想办法创造条件,把一个方程变形为用含x的代数式表示y(或含y的代数式表示x)。那么选用哪个方程变形较简便呢?通过观察,发现方程②中x的系数为1,因此,可先将方程②变形,用含有y的代数式表示x,再代入方程①求解。解:由②,得x=8-3y,③把③代入①,得(问:能否代入②中?)

  2(8-3y)+5y=-21,-y=-37,所以y=37。

  (问:本题解完了吗?把y=37代入哪个方程求x较简单?)把y=37代入③,得x= 8-3×37,所以x=-103。

  (本题可由一名学生口述,教师板书完成)

  三、师生共同小结

  在与学生共同回顾了本节课所学内容的基础上,教师着重指出,因为方程组在有解的前提下,两个方程中同一个未知数所表示的是同一个数值,故可以用它的等量代换,即使“代入”成为可能。而代入的目的就是为了消元,使二元方程转化为一元方程,从而使问题最终得到解决。

二元一次方程教案8

  一、内容和内容解析

  1.内容

  代入消元法解二元一次方程组

  2.内容解析

  二元一次方程组是解决含有两个提供运算未知数 的问题的有力工具,也是解决后续一些数学问题的基础。其解法将为解决这些问题的工具。如用待定系数法求一次函数解析式,

  在平面直角坐标系中求两直线交点坐标等.

  解二元一次方程组就是要把二元化为一元。而化归的方法就是代入消元法,这一方法同样是解三元一次方程组的基本思路,是通法。化归思想在本节中有很好的体现。

  本节课的教学重点是:会用代入消元法解一些简单的二元一次方程组,体会解二元一次方程组的思路是消元.

  二、目标和目标解析

  1.教学目标

  (1)会用代入消元法解一些简单的二元一次方程组

  (2)理解解二元一次方程组的思路是消元,体会化归思想

  2.教学目标解析

  (1)学生能掌握代入消元法解一些简单的二元一次方程组的一般步骤,并能正确求出简单的二元一次方程组的解,

  (2)要让学生经历探究的过程.体会二元一次方程组的解法与一元一次方程的解法的关系,进一步体会消元思想和化归思想

  三、教学问题诊断分析

  1.学生第一次遇到二元问题,为什么要向一元转化,如何进行转化。需要结合实际问题进行分析。由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现二元一次方程组向 一元一次方程转化的思路

  2.解二元一次方程组的步骤多,每一步需要理解每一步的目的和依据,正确进行操作,把探究过程分解细化,逐一实施。

  本节教学难点理:把二元向一元的'转化,掌握代入消元法解二元一次方程组的一般步骤。

  四、教学过程设计

  1.创设情境,提出问题

  问题1

  篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?

  师生活动:学生回答:能。设胜x场,负(10-x)场。根据题意,得2x+(10-x)=16

  x=6,则胜6场,负4场

  教师追问:你能根据问题中的等量关系列出二元一次方程组吗?

  师生活动:学生回答:能.设胜x场,负y场.根据题意,得

  我们在上节课,通过列表找公共解的方法得到了这个方程组的解,x=6,y=4.显然这样的方法需要一个个尝试,有些麻烦,能不能像解一元一次方程那样来求出方程组的解呢?

  这节课我们就来探究如何解二元一次方程组.

  设计意图:用引言的问题引人本节课内容,先列一元一次方程解决这个问题,再二元一次方程组,为后面教学做好了铺垫.

  问题2 对比方程和方程组,你能发现它们之间的关系吗?

  师生活动:通过对实际问题的分析,认识方程组中的两个y都是这个队的负场数,由此可以由一个方程得到y的表达式,并把它代入另一个方程,变二元为一元,把陌生知识转化为熟悉的知识。

  师生活动:根据上面分析,你们会解这个方程组了吗?

  学生回答:会.

  由①,得y=10-x ③

  把③代入②,得2x+(10-x)=16 x=6

  设计意图:共同探究,体会消元的过程.

  问题3 教师追问:你能把③代入①吗?试一试?

  师生活动:学生回答:不能,通过尝试,x抵消了.

  设计意图:由于方程③是由方程①,得来的,它不能又代回到它本身。让学生实际操作,得到体验,更好地认识这一点.

  教师追问:你能求y的值吗?

  师生活动:学生回答:把x=6代入③得y=4

  教师追问:还能代入别的方程吗?

  学生回答:能,但是没有代入③简便

  教师追问:你能写出这个方程组的解,并给出问题的答案吗?

  学生回答:x=6,y=4,这个队胜6场,负4场

  设计意图:让学生考虑求另一个未知数的过程,并如何优化解法。

  师生活动:先让学生独立思考,再追问.在这种解法中,哪一步最关键?为什么?

  学生回答:代入这一步

  教师总结:这种方法叫代入消元法。

  教师追问:你能先消x吗?

  学生纷纷动手完成。

  设计意图:让学生尝试不同的代入消元法,为后面学习选择简单的代入方法做铺垫.

  2. 应用新知,拓展思维

  例 用代入法解二元一次方程组

  师生活动,把学生分两组,一组先消x, 一组先消y,然后每组各派一名代表上黑板完成。

  设计意图:借助本题,充分发挥学生的合作探究精神,通过比较,让学生自主认识代入消元法,并学会优选解法.

  3.加深认识,巩固提高

  练习 用代入法解二元一次方程组

  设计意图:提醒并指导学生要先分析方程组的结构特征,学会优选解法。在练习的基础上熟练用代入消元法解二元一次方程组.

  4.归纳总结,知识升华

  师生活动,共同回顾本节课的学习过程,并回答以下问题

  1. 代入消元法解二元一次方程组有哪些步骤?

  2. 解二元一次方程组的基本思路是什么?

  3.在探究解法的过程中用到了哪些思想方法?

  4.你还有哪些收获?

  设计意图:通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生自我归纳概括的能力.

  5. 布置作业

  教科书第93页第2题

  五、目标检测设计

  用代入法解下列二元一次方程组

  设计意图:考查学生对代入法解二元一次方程组的掌握情况.

二元一次方程教案9

  教学目标

  1.会用加减法解一般地二元一次方程组。

  2.进一步理解解方程组的消元思想,渗透转化思想。

  3.增强克服困难的勇力,提高学习兴趣。

  教学重点

  把方程组变形后用加减法消元。

  教学难点

  根据方程组特点对方程组变形。

  教学过程

  一、复习引入

  用加减消元法解方程组。

  二、新课。

  1.思考如何解方程组(用加减法)。

  先观察方程组中每个方程x的系数,y的系数,是否有一个相等。或互为相反数?

  能否通过变形化成某个未知数的`系数相等,或互为相反数?怎样变形。

  学生解方程组。

  2.例1.解方程组

  思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?

  学生讨论,小组合作解方程组。

  提问:用加减消元法解方程组有哪些基本步骤?

  三、练习。

  1.P40练习题(3)、(5)、(6)。

  2.分别用加减法,代入法解方程组。

  四、小结。

  解二元一次方程组的加减法,代入法有何异同?

  五、作业。

  P33.习题2.2A组第2题(3)~(6)。

  B组第1题。

  选作:阅读信息时代小窗口,高斯消去法。

  后记:

  2.3二元一次方程组的应用(1)

二元一次方程教案10

  一、教材分析

  本节内容共安排2个课时完成。该节内容是二元一次方程(组)与一次函数及其图像的综合应用。通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的.

  二、学情分析

  学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决.

  三、目标分析

  1.教学目标

  知识与技能目标

  (1) 初步理解二元一次方程和一次函数的关系;

  (2) 掌握二元一次方程组和对应的两条直线之间的关系;

  (3) 掌握二元一次方程组的图像解法.

  过程与方法目标

  (1) 教材以问题串的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;

  (2) 通过做一做引入例1,进一步发展学生数形结合的意识和能力.

  (3) 情感与态度目标

  (1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.

  (2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.

  2.教学重点

  (1)二元一次方程和一次函数的关系;

  (2)二元一次方程组和对应的两条直线的关系.

  3.教学难点

  数形结合和数学转化的思想意识.

  四、教法学法

  1.教法学法

  启发引导与自主探索相结合.

  2.课前准备

  教具:多媒体课件、三角板.

  学具:铅笔、直尺、练习本、坐标纸.

  五、教学过程

  本节课设计了六个教学环节:第一环节 设置问题情境,启发引导;第二环节 自主探索,建立方程与函数图像的模型;第三环节 典型例题,探究方程与函数的相互转化;第四环节 反馈练习;第五环节 课堂小结;第六环节 作业布置.

  第一环节: 设置问题情境,启发引导

  内容:1.方程x+y=5的解有多少个? 是这个方程的解吗?

  2.点(0,5),(5,0),(2,3)在一次函数y= 的'图像上吗?

  3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?

  4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?

  由此得到本节课的第一个知识点:

  二元一次方程和一次函数的图像有如下关系:

  (1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

  (2) 一次函数图像上的点的坐标都适合相应的二元一次方程.

  意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y= 相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.

  效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识.

  前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.

  第二环节 自主探索方程组的解与图像之间的关系

  内容:1.解方程组

  2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的图像.

  3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;

  (1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;

  (2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.

  (3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.

  注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.

  意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础.

  效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力.

  第三环节 典型例题

  探究方程与函数的相互转化

  内容:例1 用作图像的方法解方程组

  例2 如图,直线 与 的交点坐标是 .

  意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解.通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理.这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫.

  效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.

  第四环节 反馈练习

  内容:1.已知一次函数 与 的图像的交点为 ,则 .

  2.已知一次函数 与 的图像都经过点A(2,0),且与 轴分别交于B,C两点,则 的面积为( ).

  (A)4 (B)5 (C)6 (D)7

  3.求两条直线 与 和 轴所围成的三角形面积.

  4.如图,两条直线 与 的交点坐标可以看作哪个方程组的解?

  意图:4个练习,意在及时检测学生对本节知识的掌握情况.

  效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.

  第五环节 课堂小结

  内容:以问题串的形式,要求学生自主总结有关知识、方法:

  1.二元一次方程和一次函数的图像的关系;

  (1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

  (2) 一次函数图像上的点的坐标都适合相应的二元一次方程.

  2.方程组和对应的两条直线的关系:

  (1) 方程组的解是对应的两条直线的交点坐标;

  (2) 两条直线的交点坐标是对应的方程组的解;

  3.解二元一次方程组的方法有3种:

  (1)代入消元法;

  (2)加减消元法;

  (3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.

  意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用.

  第六环节 作业布置

  习题7.7

  附: 板书设计

  六、教学反思

  本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解.因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题.

二元一次方程教案11

  教学目标

  1.使学生会用代入消元法解二元一次方程组;

  2.理解代入消元法的基本思想体现的“化未知为已知”,“变陌生为熟悉”的化归思想方法;

  3.在本节课的教学过程中,逐步渗透朴素的辩证唯物主义思想.

  教学重点和难点

  重点:用代入法解二元一次方程组.

  难点:代入消元法的基本思想.

  课堂教学过程设计

  一、从学生原有的认知结构提出问题

  1.谁能造一个二元一次方程组?为什么你造的方程组是二元一次方程组?

  2.谁能知道上述方程组(指学生提出的方程组)的解是什么?什么叫二元一次方程组的解?

  3.上节课我们提出了鸡兔同笼问题:(投影)一个农民有若干只鸡和兔子,它们共有50个头和140只脚,问鸡和兔子各有多少?设农民有x只鸡,y只兔,则得到二元一次方程组

  对于列出的这个二元一次方程组,我们如何求出它的解呢?(学生思考)教师引导并提出问题:若设有x只鸡,则兔子就有(50-x)只,依题意,得2x+4(50-x)= 140从而可解得,x=30,50-x=20,使问题得解.

  问题:从上面一元一次方程解法过程中,你能得出二元一次方程组串问题,进一步引导学生找出它的解法) (1)在一元一次方程解法中,列方程时所用的等量关系是什么?(2)该等量关系中,鸡数与兔子数的表达式分别含有几个未知数?(3)前述方程组中方程②所表示的等量关系与用一元一次方程表示的等量关系是否相同?

  (4)能否由方程组中的方程②求解该问题呢?

  (5)怎样使方程②中含有的两个未知数变为只含有一个未知数呢?(以上问题,要求学生独立思考,想出消元的方法)结合学生的回答,教师作出讲解.

  由方程①可得y=50-x③,即兔子数y用鸡数x的代数式50-x表示,由于方程②中的y与方程①中的y都表示兔子的只数,故可以把方程②中的y用(50-x)来代换,即把方程③代入方程②中,得2x+4(50-x)=140,解得x=30.

  将x=30代入方程③,得y=20.

  即鸡有30只,兔有20只.

  本节课,我们来学习二元一次方程组的`解法.

  二、讲授新课例1解方程组

  分析:若此方程组有解,则这两个方程中同一个未知数就应取相同的值.因此,方程②中的y就可用方程①中的表示y的代数式来代替.解:把①代入②,得3x+2(1-x)=5,3x+2-2x=5,所以x=3.把x=3代入①,得y=-2.

  (本题应以教师讲解为主,并板书,同时教师在最后应提醒学生,与解一元一次方程一样,要判断运算的结果是否正确,需检验.其方法是将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等.检验可以口算,也可以在草稿纸上验算)教师讲解完例1后,结合板书,就本题解法及步骤提出以下问题:1.方程①代入哪一个方程?其目的是什么?2.为什么能代入?

  3.只求出一个未知数的值,方程组解完了吗?

  4.把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简便?在学生回答完上述问题的基础上,教师指出:这种通过代入消去一个未知数,使二元方程转化为一元方程,从而方程组得以求解的方法叫做代入消元法,简称代入法.例2解方程组

  分析:例1是用y=1-x直接代入②的.例2的两个方程都不具备这样的条件(即用含有一个未知数的代数式表示另一个未知数),所以不能直接代入.为此,我们需要想办法创造条件,把一个方程变形为用含x的代数式表示y(或含y的代数式表示x).那么选用哪个方程变形较简便呢?通过观察,发现方程②中x的系数为1,因此,可先将方程②变形,用含有y的代数式表示x,再代入方程①求解.解:由②,得x=8-3y,③把③代入①,得(问:能否代入②中?)

  2(8-3y)+5y=-21,-y=-37,所以y=37.

  (问:本题解完了吗?把y=37代入哪个方程求x较简单?)把y=37代入③,得x= 8-3×37,所以x=-103.

  (本题可由一名学生口述,教师板书完成)

  三、课堂练习(投影)用代入法解下列方程组:

  四、师生共同小结

  在与学生共同回顾了本节课所学内容的基础上,教师着重指出,因为方程组在有解的前提下,两个方程中同一个未知数所表示的是同一个数值,故可以用它的等量代换,即使“代入”成为可能.而代入的目的就是为了消元,使二元方程转化为一元方程,从而使问题最终得到解决.

  五、作业

  用代入法解下列方程组:

  5.x+3y=3x+2y=7.

二元一次方程教案12

  教学目标1、经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;

  2、能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;

  3、学会开放性地寻求设计方案,培养分析

  教学难点用方程组刻画和解决实际问题的过程。

  知识重点经历和体验用方程组解决实际问题的过程。

  教学过程(师生活动)设计理念

  创设情境前面我们初步体验了用方程组解决实际问题的全过程,其实生产、生活中还有许多问题也能用方程组解决.

  (出示问题)据以往的统计资料,甲、乙两种作物的单位面积产量的比是1:1:5,现要在一块长200 m,宽100 m的长方形土地上种植这两种作物,怎样把这块地分为两个长方形,使甲、乙两种作物的总产量的比是3:4(结果取整数)?以学生身边的实际问题展开学习,突出数学与现实的联系,培养学生用数学的意识。

  探索分析

  研究策略以上问题有哪些解法?

  学生自主探索,合作交流,整理思路:

  (1)先确定有两种方法分割长方形;再分别求出两个小长方形的面积;最后计算分割线的`位置.

  (2)先求两个小长方形的面积比,再计算分割线的位置.

  (3)设未知数,列方程组求解.

  ……

  学生经讨论后发现列方程组求解较为方便.多角度分析问题,多策略解决问题,提高思维的发散性。

  合作交流

  解决问题引导学生回顾列方程解决实际问题的基本思路

  (1)设未知数

  (2)找相等关系

  (3)列方程组

  (4)检验并作答

  如图,一种种植方案为:甲、乙两种作物的种植区域分别为长方形aefd和bcfe.设ae=xm,be=ym,根据问题中涉及长度、产量的数量关系,列方程组

  解这个方程组得

  过长方形土地的长边上离一端约106 m处,把这块地分

  为两个长方形.较大一块地种甲作物,较小一块地种乙作物.

  你还能设计别的种植方案吗?

  用类似的方法,可沿平行于线段ab的方向分割长

  方形.

  教师巡视、指导,师生共同讲评.

  比较分析,加深对方程组的认识。

  画图,数形结合,辅助学生分析。

  进一步渗透模型化的思想。

  引发学生思考,寻求解决途径。

  拓展探究

  综合应用学生在手工实践课中,遇到这样一个问题:要用20张白卡纸制作包装纸盒,每张白卡纸可以做盒身2个,或者做盒底盖3个,如果1个盒身和2个盒底盖可以做成一个包装纸盒,那么能否将这些白卡纸分成两部分,一部分做盒身,一部分做盒底盖,使做成的盒身和盒底盖正好配套?请你设计一种分法.

  按以下步骤展开问题的讨论:

  (l)学生独立思考,构建数学模型.

  (2)小组讨论达成共识.

  (3)学生板书讲解.

  (4)对方程组的解进行探究和讨论,从而得到实际问题的结果.

  (5)针对以上结论,你能再提出几个探索性问题吗?以学生学习生活中遇到的

  问题展开讨论,巩固用二元一次

  方程组解决实际问题的一般过程,并不断提高分析问题的能力.安排开放题,以利于培养学生探索精神和创新意识.

  小结与作业

  小结提高提问:通过本节课的讨论,你对用方程解决实际的方法又有何新的认识?

  学生思考后回答、整理.

  布置作业12、必做题:教科书116页习题8.3第1(2)、4题。

  13、选做题:教科书117页习题8.3第7题。

  14、备15、选题:

  (3)解方程组

  (2)小颖在拼图时,发现8个一样大小的矩形(如图1所示),恰好可以拼成一个大的矩形.

  小彬看见了,说:“我来试一试.”结果小彬七拼八凑,拼成如图2那样的正方形.咳,怎么中间还留下一个洞,恰好是边长2 mm的小正方形!

  你能帮他们解开其中的奥秘吗?

  提示学生先动手实践,再分析讨论.

  分层次布1作业.其中“必

  做题”面向全体学生,巩固知识、

  方法,加深理解厂选做题”面向

  部分学有余力的学生,给他们一

  定的时间和空间,相互合作,自主探究,增强实践能力.备选通供教师参考.

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  本课所提供的例题、练习题、作业题突出体现以下特点:

  1、活动性.学生在图形分割、手工操作、拼图游戏中展开数学问题的讨论,更具趣味性,学生在玩中学、做中学,在增强能力的同时,收获快乐.

  2、探索性.问题解决的策略不易获得,问题中的数量关系不易发现,问题中的未知数不

  易设定,这为学生开展探究活动提供了机会.

  3、开放性.解决问题的策略、方法、问题的结论的开放性设计,意在增强学生的创新意识和培养勇于挑战、克服困难的能力.

二元一次方程教案13

  一、教学目标

  (1)知识目标:进一步了解加减消元法,并能够熟练地运用这种方法解较为复杂的二元一次方程组。

  (2)能力目标:经历探索用“加减消元法”解二元一次方程组的过程,培养学生分析问题、解决问题的能力和创新意识。

  (3)情感目标:在自由探索与合作交流的过程中,不断让学生体验获得成功的喜悦,培养学生的合作精神,激发学生的学习热情,增强学生的自信心。

  二、教学重点难点

  (1)教学重点:利用加减法解二元一次方程组

  (2)教学难点:二元一次方程组加减消元法的灵活应用

  三、教学方法

  启发引导法、演示法

  四、教学准备:小黑板

  五、教学过程

  (一)复习旧知

  解二元一次方程组的基本思想是什么?(消元)

  (二)探究新知

  1、情境导入(利用小黑板)

  王老师昨天在水果批发市场买了2千克苹果和4千克梨共花了14元,李老师以同样的价格买了2千克苹果和3千克梨共花了12元,问:梨每千克的售价是多少元?

  凭借学生的经验估计他们会在列出二元一次方程组后马上想到用代入法解方程组,进而解决问题。这时教师出示两种算法让学生加以比较,通过比较学生不难发现第二种算法是解决这个问题更简单的方法。

  师:算法一是代入消元法,算法二就是今天我们将要学习的加减消元法。

  复习加减消元法的定义:利用等式的性质使方程组中两个方程中的某一个未知

  数前的系数的绝对值相等,然后把两个方程相加或相减,以消去这个未知数,使方程只含有一个未知数而得以求解。

  这种解二元一次方程组的方法叫作加减消元法,简称加减法

2、例题讲评

  ⑴5212xy例①解方程组:⑵326xy解:⑴-⑵,得

  2x=6

  x =3

  把x =3代入⑴得

  532y12

  3解这个方程得y = 2

  x33∴原方程组的解为y-2练习:指出下列方程组求解过程中有错误步骤,并给予订正。

  ⑴744xy练习1.:解方程组⑵544xy解:⑴-⑵,得

  2x=4-4,x=0

  把x=0代入⑴得

  704y4

  解这个方程得

  y1

  x0∴原方程组的解为

  y1⑴3521xy例②解方程组:

  ⑵2511xy解:⑴﹢⑵,得

  5x=10

  x=2

  把x=2代入⑴得

  3×2+5y=21

  解这个方程得y=3

  x2∴原方程组的解为

  y3

  练习:指出下列方程组求解过程中有错误步骤,并给予订正。

  3x4y14⑴练习②解方程组

  5x4y2⑵解:⑴-⑵,得

  -2x=12

  x =-6

  把x =-6代入⑴得

  5(6)4y2

  解这个方程得y = 8

  x6∴原方程组的'解为

  y8⑴256xy例③解方程组:⑵364xy解:由⑴3得

  ⑶

  6x15y18

  由⑵2得

  ⑷

  6x12y8

  由⑶-⑷得

  27y10

  10解这个方程得y2710把代入⑵得y2710

  2x562756x解得2756x27∴原方程组的解为10y27

  练习:指出下列方程组求解过程中有错误步骤,并给予订正。

  2x5y0⑴练习③解方程组

  x3y11⑵

  解:由⑵2得

  ⑶

  2x6y11

  由⑴-⑶得

  11y11

  解这个方程得y1

  把代入⑵得

  y1

  x3(1)11

  解得

  x14

  x14∴原方程组的解为

  y1

  六、小结

  掌握加減消元法应注意两点:(1)加减消元的根据是等式两边都加上或减去同一个数或同一个等式,等式不变。(2)相等两数的差为零,互为相反数的和为零。因此,当两个方程中的同一个未知数的绝对值相等时,可以把两个方程相加或相减使这个未知数的系数化为零,从而达到消元的目的。

  七、布置作业

  练习3.3第2题(1)(2),第(3)选做。

  八、板书设计

  (1)复习旧知

  (2)例题讲评

  ⑴⑴52123521xyxy例①解方程组:例②解方程组:⑵⑵3262511xyxy⑴256xy例③解方程组:⑵364xy

  (3)小结

二元一次方程教案14

  二元一次方程

  §11.1 二元一次方程

  【教学目标】

  【知识目标】

  了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。

  【能力目标】

  通过讨论和练习,进一步培养学生的观察、比较、分析的能力。

  【情感目标】

  通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。

  【重点】

  二元一次方程组的含义

  【难点】

  判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。

  【教学过程】

  一、引入、实物投影

  1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?

  2、请每个学习小组讨论(讨论2分钟,然后发言)

  这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍, 得方程:x+1=2(y-1)

  师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的项的次数是多少? (含有两个未知数,并且所含未知数项的次数是1)

  师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程

  注意:这个定义有两个地方要注意①、含有两个未知数,②、含未知数的次数是一次

  练习(投影)

  下列方程有哪些是二元一次方程

  +2y=1 xy+x=1 3x-=5 x2-2=3x

  xy=1 2x(y+1)=c 2x-y=1 x+y=0

  二、议一议、

  师:上面的方程中x-y=2,x+1=2(y-1)的x含义相同吗?y呢?

  师:由于x、y的含义分别相同,因而必同时满足x-y=2和x+1=2(y-1),我们把这两个方程用大括号联立起来,写成

  x-y=2

  x+1=2(y-1)

  像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

  如: 2x+3y=3 5x+3y=8

  x-3y=0 x+y=8

  三、做一做、

  1、 x=6,y=2适合方程x+y=8吗?x=5,y=3呢?x=4,y=4呢?你还能找到其他x,y值适合x+y=8方程吗?

  2、 X=5,y=3适合方程5x+3y=34吗?x=2,y=8呢?

  你能找到一组值x,y同时适合方程x+y=8和5x+3y=34吗?

  x=6,y=2是方程x+y=8的一个解,记作 x=6 同样, x=5

  y=2 y=3

  也是方程x+y=8的一个解,同时 x=5 又是方程5x+3y=34的`一个解,

  y=3

  四、随堂练习(P103)

  五、小结:

  1、 含有两未知数,并且含有未知数的项的次数是一次的整式方程叫做二元一次方程。

  2、 二元一次方程的解是一个互相关联的两个数值,它有无数个解。

  3、 含有两个未知数的两个二元一次方程组成的一组方程,叫做二元一次方程组,它的解是两个方程的公共解,是一组确定的值。

  六、教后感:

  七、自备部分

二元一次方程教案15

  教学目标:

  1、使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用2、通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。

  重点:能根据题意列二元一次方程组;根据题意找出等量关系;

  难点:正确发找出问题中的两个等量关系

  教学过程:

  一、复习

  列方程解应用题的`步骤是什么?

  审题、设未知数、列方程、解方程、检验并答

  新课:

  看一看课本99页探究1

  问题:

  1题中有哪些已知量?哪些未知量?

  2题中等量关系有哪些?

  3如何解这个应用题?

  本题的等量关系是(1)30只母牛和15只小牛一天需用饲料为675kg

  (2)(30+12只母牛和(15+5)只小牛一天需用饲料为940

  练一练:

  1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?

  2、有大小两辆货车,两辆大车与3辆小车一次可以支货15。50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?

  3、某工厂第一车间比第二车间人数的少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人?

  4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?

【二元一次方程教案】相关文章:

二元一次方程教案03-27

二元一次方程组教学反思03-10

解二元一次方程组教学反思03-28

解二元一次方程组教学反思05-16

解一元一次方程教案02-25

一元一次方程应用教案01-28

《解一元一次方程》数学教案06-20

解一元一次方程教案15篇03-01

一元一次方程教学反思04-22