分数乘法教案

时间:2022-01-12 14:56:52 教案 我要投稿

分数乘法教案汇编七篇

  作为一名教师,时常要开展教案准备工作,教案是教学活动的依据,有着重要的地位。优秀的教案都具备一些什么特点呢?下面是小编精心整理的分数乘法教案7篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

分数乘法教案汇编七篇

分数乘法教案 篇1

  教学目标:

  1、结合具体情境, ,探索并理解分数乘整数的意义;

  2、探索并掌握分数乘整数的计算方法,并能正确计算;

  3、能正确运用“先约分再计算”的方法进行计算。

  教学重点:

  1、结合具体情境, ,探索并理解分数乘整数的意义;

  2、探索并掌握分数乘整数的计算方法,并能正确计算;

  教学难点:

  能正确运用“先约分再计算”的方法进行计算。

  教学过程:

  一、探索分数乘整数的意义和计算方法。

  1、出示情境:剪一个这样的图案要用一张彩纸的1/5,剪3个这样的图案需要多少张彩纸?

  2、请大家想办法解决问题,先自己想一想,没有思路的同学可以同桌交流,也可以看一看书上是怎么解决的。

  3、 组织全班交流。 师生一起来分享交流过程。对学生提出的想法,师可以这样提问:你列的这个算式表示什么意义呢?对这个算法,你是怎么理解的,别的同学还有什么问题吗? 教师在学生讨论的过程中,把加法的板书和乘法的板书有机的结合起来。并让学生理解求几个相同分数的和用乘法计算。

  4、练一练:教科书第2页“涂一涂,算一算”。 学生独立完成后,让学生说说自己的`思路。 讨论:你能用自己的语言说一说整数乘分数的计算方法吗? 小结:分数与整数想乘,用分数的分子和整数的乘积作分子,分母不变。 练习:教科书“试一试”第1、2题。

  5、探讨“先约分再计算”的方法。

  出示 6×5/9。让学生独立完成,指名板演。 学生可能出现两种计算方法,如果没有方法二,教师可指导学生看书得到。 教师引导学生比较两种算法,得出“先约分再计算”的方法比较简便。

  练习:

  (1)教科书“练一练”第1题。

  (2)计算

  二、巩固练习

  1、教科书第4页“练一练”第2、3、4、题。 学生先独立完成,指名板演,在集体讲评。

  2、教科书第4页“练一练”第5题。 让学生把计算结果写在课本上,再仔细观察,看看发现了什么?

  3、教科书第4页“数学故事”。 先让学生说说,你从每幅图中得到了哪些信息?如何解决图中提出的问题。

分数乘法教案 篇2

  第一单元

  分数乘法

  第五课时

  小数乘分数

  教学内容:

  教材第8页例5,做一做,练习二1~4。

  教学目标:

  1、在解决问题的过程中学习并掌握小数乘分数的计算方法。

  2、经历小数乘分数的计算方法的探究过程。

  3、体会算法多样化的数学思想,提高计算能力。

  教学重点:

  掌握小数乘分数的计算方法。

  教学难点:

  灵活选择不同的计算方法,熟练地进行小数乘分数的计算。

  教学过程:

  一、复习导入。

  1、计算

  交流时让学生说一说计算方法和计算过程中的约分方法。

  2、把下面的小数化成分数,分数化成小数。

  1.2()

  0.4()

  3.5()

  1.25()

  让学生说一说怎样将一个小数化成分数?

  二、探索新知

  1、例题5:松鼠的尾巴长度约占身体长度的 。松鼠欢欢的身体长2.1分米,松鼠乐乐的身体长2.4分米。

  (1)提取题中的已知条件和所求问题

  已知条件:①松鼠的尾巴长度约占身体长度的34,②松鼠欢欢的身体长2.1dm。

  所求问题:松鼠欢欢的尾巴有多长?

  (2)确定单位1,根据松鼠的尾巴长度约占身体长度的34可知,应把松鼠欢欢的身体长看作单位1,单位1已知,所求松鼠欢欢的尾巴有多长,就是求2.1dm的`34是多少,用乘法计算,列式为2.134

  启发观察,这个算式和我们前面学习的分数乘法有什么不同?

  (3)探讨小数乘分数的计算方法。

  提问:小数乘分数,可以怎样进行计算呢?想一想,试一试。

  学生独立思考,尝试计算。组织交流,得出可以把2.1化成分数,也可以把 化成小数。汇报交流计算方法,教师结合交流情况进行板书。

  小数化成分数: = = (分米)

  分数化成小数: =2.10.75=1.575(分米)

  3、解决问题二。

  (1)出示问题:松鼠乐乐的尾巴有多长?

  (2)学生独立解答。

  组织交流汇报。交流时,先让学生说说列式的依据,再交流计算方法。

  学生可能会采用问题一中学习的方法进行计算,这时教师可以追问:同学们,想想分数乘整数时,我们是怎样进行约分的,小数乘分数也能这样约分吗?

  当学生有所发现后,让学生进行尝试计算,最后汇报交流。教师结合学生的交流情况进行板书

  小数和分母约分: (分米)

  4、观察比较,回顾思考。

  提问:观察上面三种计算方法,你想发表自己的什么见解?让学生独立思考后进行小组交流讨论,是后进行全班交流 。(三种方法中,小数化成分数的方法具有普遍性,适用于所有的小数乘分数的计算;当分数不能化成有限小数时,一般不采用分数化成小数的方法进行计算;当小数和分母不能进行约分时,一般不采用小数和分母约分的方法进行计算。三种方法中,小数和分母约分的方法计算起来最简便,因此在计算小数乘分数时,先观察这个小数能不能和分母进行约分,如果可以进行约分,一般采用先约分再乘的方法。)

  三、巩固练习。

  1、教材第8页做一做。先让学生独立计算,再组织汇报交流。交流时让学生说说为什么选择这样的方法进行计算。

  2、教材第10页练习二第2题。

  3、教材第10页练习二第3题。

分数乘法教案 篇3

  教学内容:

  分数乘法

  教学目标:

  1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

  2、知识目标:学习分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以另一个分数的结果。

  3、情感目标:使学生感受到分数乘法与生活的.密切联系,培养学习数学的良好兴趣。

  重点难点:

  学生能够熟练的计算出分数乘以分数的结果。

  教学方法:

  师生共同归纳和推理

  教学准备:

  教学参考书、教科书

  教学过程:

  一、复习导入

  教师出示教学板书,请学生计算下列分数乘法运算题。

  教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?

  学生寻找完毕,纷纷举手准备回答问题。

  教师提问学生回答问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。)

  二、课堂练习

  学生做第一题折一折,涂一涂。让学生用折纸的方式再次验证分数乘以分数的运算法则,注意让学生体会分数的几分之几是多少?

  学生做第2题,注意让学生体验分数相乘的积于每一个乘数的关系。

  学生做第3题,让学生理解分数的几分之几与占整体1之间的关系。

  学生做第4题,让学生能够学会比较 的 和 占整体1的大小。

  学生做第5题,教师注意让学生整体的几分之几是多少?

  学生做第6题,让学生注意区分不同标准的几分之几是多少;占整体的几分之几。

  学生做第7题,教师注意让学生利用分数乘法学会解决生活中实际问题。

  第8题,学生根据学过的分数乘法知识,分辨一下唐僧分西瓜是否公平。

  三、课堂小结

  同学们,这一节课你学到了哪些知识?(提问学生回答)

  板书设计:

  分数乘法

  是整个操场 1的 , 是整个操场1的 。

  分数乘以分数的运算法则:分子相乘,分母相乘,能约分的要约分。

分数乘法教案 篇4

  教学目标:

  1.使学生通过自主探索,理解分数乘整数的意义与整数乘法相同,初步理解分数乘整数的计算法则。

  2.使学生进一步增强运用已有知识经验探索并解决问题的意识,体验探索学习的乐趣。

  教学重点:

  分数乘整数的意义和计算法则。

  教学难点:

  分数乘整数的计算方法以及算法的优化。

  教学方法:

  自主合作探究。

  教具准备:

  多媒体

  教学过程:

  一、复习引入

  1.同学们,我们已经学会了分数的加法和减法,下面口算。

  2.今天我们来学习分数乘法。板书

  谁能编一道分数乘法算式(择几道板书黑板一侧)

  分数乘法有很多,今天先研究其中一种:分数乘整数。

  看了今天的课题,可能有同学马上想知道分数乘法怎么算呢?其实,每一个新知识的产生都与原有的旧知密切相关,对于分数乘整数来说,当然也是如此。下面我们来讨论!

  二、探究

  1.理解意义。

  出示例题1:做一朵绸花用 米绸带。

  (1)小芳做了3朵这样的绸花,一共用了几分之几米绸带?

  课件: + + =(米)

  (2)小华做7朵这样的绸花,一共用了几分之几米绸带?

  课件: + + + + + + =(米)

  (3)学校庆国庆活动一共要做15朵这样的绸花,你能用加法计算出几分之几米绸带?

  + + + + + + + + + + + + + + =?

  这么多米加起来,你有什么感觉?有没有什么好办法?有没有什么好办法?

  导入:如果把这道加法算式改写成乘法,你特别需要知道什么?

  板书: ×3= 7×= ×15=

  谁能说说 ×3表示什么意思?7×呢?

  前面大家所说的(黑板一侧板书的)乘法算式,谁能说说他们的'意思?对比一下,你们觉得是分数加法简便,还是分数乘法简便?

  2.探究算法。

  现在我们来看分数乘整数怎样计算。我们先来研究×3, ×3=怎么算呢?请大家尝试解决。指名板演典型算法。

  ×3= =

  ×3=++=

  ……

  交流:第二种按照加法计算,不简便,重点体会第二种和加法有着联系:×3=+ + = = = (教师板书),符合加法计算结果,是正确的,也是简便的。同时借助直观图观察验证。

  练习:×7,与原来加法结果比较,完全正确。

  谁能试着总结一下分数乘整数的计算方法:分母不变,分子和整数相乘,所得积做分子。

  继续研究:×30

  提示:这道题与前面几题相比可能有些新情况,你看出来了嘛?先试试看,再同桌交流。

  指名板演新情况:都有相同点?(约分),不同是什么?(主要是约分的区别)

  讨论:约分的先后序。(先乘后约,还是先约后乘),体会到先约后乘的简便。

  练习:先判断可不可以约分?怎样约分?

  总结注意事项:能约分的先约分再乘。

  三、练习

  填一填:练习第一、二题。

  算一算:完成3第三、七题。

  四、总结

  本节课学习了那些内容?通过学习你有那些收获?还有那些疑问?

  五、作业

  练习八第2题、第4题。

分数乘法教案 篇5

  1、分数乘法

  (1)分数乘整数

  教学目标:

  1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

  2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

  3、 引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

  教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  教学难点:引导学生总结分数乘整数的计算法则。

  教学过程:

  一、复习

  1.出示复习题。

  (1)列式并说出算式中的被乘数、乘数各表示什么?

  5个12是多少? 9个11是多少? 8个6是多少?

  (2)计算:

  1/6+2/6 +3/6 = 3/10+3/10 +3/10 =

  2.引出课题。

  ++这题我们还可以怎么计算?今天我们就来学习分数乘法。

  二、新授

  1、 利用3/10 +3/10 +3/10 教学分数乘法。

  (1) 这道加法算式中,加数各是多少?(都是)

  (2)表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法,3/10 3)

  (3)3/10 +3/10 +3/10 =9/10,那么 3/10+ 3/10+3/10 =3/10 3,所以 3/103=9/10

  2、 出示例1,画出线段图,学生独立列式解答。

  (1) 引导学生看图,理解人跑一步的距离相当于袋鼠跳一下的 ,就是把袋鼠跳一下的距离即这一整条线段看作单位1。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

  (2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的,那么人跑3步的距离相当于袋鼠跳一下的几分之几?就是求3个 是多少?(列式: 3 = )

  3、 结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。

  4、 练习:练习完成做一做第2题。

  5、 教学例2

  (1)出示 6,学生独立计算。

  (2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?

  (3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。

  (4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

  三、练习

  1、 完成做一做的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

  2、 做一做第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)

  四、作业

  练习二第1、2、4题。

  (2)一个数乘分数

  教学目标:

  1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。

  2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。

  3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

  教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。

  教学难点:推导算理,总结法则。

  教学过程:

  一、导入

  1、计算下列各题并说出计算方法。

  2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。

  3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。

  二、新课

  1、教学例3

  (1)出示条件和问题:每小时粉刷这面墙的,小时粉刷这面墙的几分之几?根据公式工作效率工作时间=工作总量,学生列式:

  (2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的,第二步再涂出小时粉刷这面墙的面积,即 的 ,由此得出这个乘法算式表示 的 是多少?

  (3)根据直观的操作结果,得出=,根据刚才操作的过程和结果推导出计算方法:= = 。

  (4)提出问题:小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。

  2、相关练习:练习二第5题。

  3、小结一个数乘分数的意义和计算方法。

  (1)意义:一个数乘分数,表示求这个数的几分之几是多少。

  (2)计算法则:分数乘分数,用分子乘分子,分母乘分母。

  4、教学例4

  (1)引导学生分析题意,根据速度时间=路程的数量关系列出算式。

  (2)先让学生独立计算,再交流计算的方法,明确分数乘分数也可以先约分再乘。通过展示学生的计算过程,进一步明确约分的书写格式。

  (3)学生独立解答5分钟飞行多少千米?,讲评中介绍分数乘整数的另一种格式。

  5、巩固练习:P11做一做(注意提醒学生要先观察能否约分,再着手计算)。

  三、练习

  1、练习三第6题

  (1)求2枝长多少分米,就是求2个 是多少?算式: 2

  (2)求 枝或 枝长多少分米,就是求 的 是多少,或的是多少。

  2、练习三第9题。(学生讨论交流,说说错在哪里,结合学生易犯的错误讲解)

  四、作业

  练习二第3、7、8、10题。

  (3)分数混合运算和简便运算

  教学目标:

  1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

  2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的.灵活性。

  3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。

  教学重点:

  理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

  教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。

  教学过程:

  一、复习

  1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)

  2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)

  3、观察下面各题,先说说运算顺序,再进行计算。

  (1)362+15 (2)56+73 (3)15(34-27)

  二、新授

  1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。

  (1) +(2)- (3)-(4)+

  2、复习整数乘法的运算定律

  (1)乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc)

  乘法分配律:(a+b)c=ac+bc

  (2)这些运算定律有什么用处?你能举例说明吗?

  (3)用简便方法计算:2574 0.36101

  3、推导运算定律是否适用于分数。

  (1)鼓励学生大胆猜测并勇于发表自己的个人意见。

  (2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)

  (3)各四人小组汇报讨论和计算结果。

  4、教学例6

  (1)出示: ,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)

  (2)出示: +,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 4和 4都能先约分,这样能使数据变小,方便计算)

  (3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。

  三、练习

  P14做一做:先让学生观察题目中的已知数的特点,说说怎样做简便?应用了什么运算定律。然后再独立完成练习。

  (4)练习课

  教学目标:

  1、使学生掌握分数乘加、乘减混合运算的顺序,能正确地进行计算。

  2、在学习的过程中培养学生的合作意识及认真、仔细的良好学习习惯。

  教学重点:熟练掌握运算定律,灵活、准确、合理地进行简便计算。

  教学难点:熟练掌握运算定律,准确、合理地进行简便计算。

  教学过程:

  一 、复习

  1、复习分数混合运算的运算顺序。

  2、复习乘法的简便运算定律

  乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc)

  乘法分配律:(a+b)c=ac+bc

  二、巩固练习

  1、练习三第1题:应用运算定律进行简便计算(引导学生仔细观察算式特点,正确运用定律进行计算)。

  2、练习三第三题:分数混合运算(提醒学生注意运算顺序,如果可以应用韵律进行计算的题目也可以选择用简便方法计算,如:-= (1- ); (5- )既可以按运算顺序先算小括号里面的,也可以应用乘法分配律进行计算。

  3、练习三第2题:一朵花要用 张纸,一个同学做了9朵,列式 9,另一个同学做了11朵,列式 11,他们一共做了 9+ 11(朵),学生还可能这样列式: (9+11),引导学生发现,这种列式实际上就是乘法分配律的两种形式。

  4、练习三第8题:改错题,这两道题主要都是运算顺序错误,学生在纠错的同时也巩固了先乘除、后加减的运算顺序。

  5、练习三第6题:要求学生观察题目,能用简便算法的要用简便算法。

  6、练习三第4、5、9题:先让学生分析题意,再列式计算。计算中提醒学生注意运用定律使计算简便。

  三、布置作业

  完成相关的练习册。

  (5)分数乘法整理与复习

  教学目的:

  1.分数乘法的计算方法

  2.分数乘加、乘减混合运算

  3.熟练掌握运算定律,并运用运算定律进行简便计算。

  教学重点:

  1.分数乘法的计算方法

  教学难点:

  运算定律进行简便计算

  教学过程:

  一、复习分数乘法的计算方法

  30 ===

  60 ===

  12 ==

  二、复习分数乘加、乘减混合运算。

  + 1- (1- )

  7+ 120(+)

  三、复习分数的运算定律并进行简便计算。

  +12- - 48+48 24( - )

  四、相关文字题复习

  1、4的与的4倍的和是多少? 2、 的 比它的 多多少?

  五、相关的解决问题。

  1、一块长方形纸夹板长米,宽是长的,这块纸夹板的周长和面积分别是多少?

  2、某菜场运来茄子800千克,第一天卖完了全部的,第一天卖了多少千克,还剩下多少茄子没有卖?

  3、 一个平行四边形,底是米,高是底的 ,这个平行四边形的面积是多少?

  六、拓展练习。

分数乘法教案 篇6

  一、学情分析:

  我们六(五)班有学生48人,男生有19人,女生有29人,自上学年实行小组合作学习以来,每个学生都有了明确的学习目标,在平时学习中主动、努力,每组中的1、2号对3、4号的帮扶起了很大的作用,使这部分学困生在思维方法和技能上有了进一步的提高,在数学情感上,能主动地参与到学习中来。

  二、教材分析:

  (一)教学内容

  本册内容共有8个单元。一单元分数乘法,二单元分数除法,三单元比,五单元分数四则混合运算,这四个单元所属领域是数与代数。四单元的圆所属领域是空间和图形。六单元的统计,七单元的可能性,八单元的百分数所属领域是统计与概率。美的奥秘,数学与生活,远离肥胖所属领域是综合应用。

  (二)教学重难点

  教学重难点有:分数乘除法应用题,按比例分配应用题,如何求圆的周长和面积,化简比和求比值的区别和联系。

  三、教学目标:

  (一)知识与技能目标

  1.能结合具体情境理解分数乘除的意义,能解决有关分数的实际问题。

  2理解比的意义和性质,会解决有关按比例分配的实际问题。

  3结合具体情境,理解百分数的意义,能用百分数解决问题。

  4掌握圆的周长和面积的计算方法,能够运用圆的周长和面积公式解

  决简单的实际问题。

  5认识众数、中位数,会求一组数的众数和中位数,会对一组数据作出合理的分析推理。

  6结合具体实例,设计一个符合要求的方案。

  (二)数学思考目标

  让学生经历知识的形成过程,感受“转化”和“数形结合”的数学思想方法。

  在观察、操作、思考、交流等活动中,

  进步发展抽象概括推理的能力。

  (三)情感态度目标

  1能积极参加数学学习活动,对数学有好奇心和求知欲,并获取成功的学习体验,增强学习数学的信心。

  2体会数学与人类生活的密切联系,感受数学的严谨性和数学结论的

  确定性。

  3学会倾听与质疑,养成独立思考的好习惯。

  四、教学措施:

  1整合学习内容,强化数学知识间的联系及学科间的融合。

  2恰当确立每节课的教学内容,树立单元教学思想,在重点例题上下功夫。

  3精心设计数学活动,让学生在探索中理解数学知识,掌握数学方法。

  4注重数学思想方法的渗透和解决问题策略的方法。

  在本册中结合教学内容渗透“极限”和“数形结合”的数学思想。

  在教学中学生经历“现实问题——数学问题——联系已有知识经验寻找方法——归纳概括总结公式——运用公式解决现实问题”这一首尾相接的全过程。

  5改进评估方法实行小组“捆绑式”评价方法和个人评价方法相结合的方式。评价形式也有生生互评、师生互评等多种形式。

  五、课时安排

  一、分数乘法

  理解一个数和分数相乘的意义,理解分数乘分数的算理理解分数乘法的意义,掌握分数乘法的计算方法,会求一个数几分之几的实际问题

  二、分数除法

  分数除法的计算方法,

  解决已知一个数的几分

  之几是多少,求这个数的.实际问题理解分数除法的意义,会计算,会解决实际问题。

  三、比

  理解比的意义和性质理解比的意义,会求比值掌握比的基质,会化简比。

  四、圆

  圆的周长和面积

  认识圆的特征,会正确计算圆的周长和面积。

  五、分数四则混合运算

  分析稍复杂的有关分数分析问题和解决问题的能力。四则混合运算问题的数量关系及理解四则混合运算的顺序。

  六、统计

  理解众数、中位数的意义,选择合适的统计量描述数据的特征。会求一组数的中位数、众数,会选择合适的统计量描述数据,分析问题。

  七、可能性

  能按要求根据可能性大小设计方案

  能根据可能性大小设计符合要求的方案

  八、百分数

  百分数的意义,解决一个数是另一个百分之几

  的问题能进行百分小的互化,解决实际问题

  总复习

  整理知识点

  养成总结与反思的习惯

分数乘法教案 篇7

  本单元教学分数乘法,是在理解了分数的意义,掌握了分数加、减法计算的基础上编排的。能进一步理解分数的意义,为教学分数除法打下基础。教学内容以计算为主,包括分数与整数相乘、分数与分数相乘。教学要求是理解算理、掌握算法,能应用于分数连乘计算和解决实际问题中去;在探索算法、总结法则的过程中发展数学思考的能力。下表是全单元教学内容的编排。

  分数与整数相乘

  用乘法求几个相同分数的和(例1)

  用乘法求整数的几分之几是多少(例2)

  求一个数的几分之几是多少的实际问题(例3) 练习八

  分数乘分数

  分数乘分数(例4、例5)

  分数连乘(例6) 练习九

  倒数

  倒数的意义,求倒数的方法(例7) 练习十

  整理与练习

  教材在编排上有以下特点。

  第一,以计算法则的教学为编排主线,把运算的意义、方法以及实际应用的教学有机结合在一起,优化了全单元的内容结构。

  乘法运算的范围从整、小数扩大到分数,其意义、算法以及实际应用都有较大的发展。因此,分数乘法的意义、计算法则、解决实际问题是本单元的三个重要内容。教材以计算为主线,在研究算法的过程中体会运算意义,通过运算概念的完善、发展,进一步理解算法;在解决实际问题的背景中教学计算知识,应用学到的算法解决实际问题。意义、法则、应用三方面的有机结合,优化了知识结构,能充分发挥教学的功能和价值。如,例1从做绸花要用多少米绸带的实际问题引出分数乘整数的计算问题,把原来的乘法概念扩展到分数范围,激活已有的知识经验;应用同分母分数加法的知识,体会并得出分数乘整数的计算方法,既解决了做绸花的实际问题,又解决了新的计算课题。又如,例2为解决做绸花的实际问题列算式101/2和102/5,联系现实的数量关系体会这些算式的具体含义,得出求一个数的几分之几是多少,可以用乘法计算的结论,发展了乘法的意义。在计算两个乘法算式时,巩固了分数与整数相乘的算法。

  第二,知识发展线索清晰,前后联系紧密,各道例题的教学任务明确。下图是本单元教材里的计算知识结构图。

  先教学整数乘分数,后教学分数乘分数,符合简单到复杂的编排原则。而且,整数乘分数还能与整数乘法建立联系,应用整数乘法知识,为分数乘法的教学开好头。

  整数乘分数先是求几个相同分数的和,再是求整数的几分之几是多少。前者在运算意义上与整数乘法一致,算法是例1的重点。正由于运算意义和整数乘法一致,可以把整数乘分数转化成同分母分数相同,体会并得出整数乘分数的计算法则。后者在运算意义上有很大的扩展,乘法不仅能求几个相同加数连加的和,还能求一个数的几分之几是多少,这是例2的教学重点。而例2的算法,在前面已经解决了。

  分数乘分数先教学基础知识,再培养计算技能。例4和例5要把求一个数的几分之几是多少的认识迁移到分数乘分数,深入理解分数乘法的意义,还要解决分数乘分数的算法,并形成统摄分数乘整数、分数乘分数的计算法则。所以,这两道例题着重教学基础知识。例6教学分数连乘,巩固计算法则的同时,培养分子、分母交叉约分的技能。

  第三,编排倒数知识,为分数除法作准备。

  分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。

  一、 例1着重教学分数与整数相乘的算法。

  首次教学分数乘法,教材除了从实际问题引出,还尽量与整数乘法靠近,充分利用已有的知识、经验,构建新运算的意义与算法。创造迁移的条件,引导学生主动写出分数乘法算式;营造探索的氛围,放手让学生创新分数乘整数的方法。

  例1的第(1)个问题求3个相同分数的和。在代表1米绸带的线条图上,已经表示出做1朵绸花用的绸带3/10米,要求学生继续涂色表示做3朵绸花所用的米数。通过涂色,体会实际问题里的数学问题是求3个3/10是多少,看到做3朵绸花用的绸带是9/10米,激活已有的乘法概念以及同分母分数加法的知识。于是,一些学生会列加法算式3/10+3/10+3/10,另一部分学生会列乘法算式33/10或3/103。比较加法算式和乘法算式,实现原有运算概念的迁移:求几个相同分数相加的和,用乘法算比较简便。分数乘法算式和整数乘法算式一样,不区分被乘数和乘数,求3个3/10是多少,算式33/10和3/103都可以。让学生研究分数乘整数的算法,把分子相加、分母不变加工成分子与整数相乘,分母不变,获得新的计算方法。尤其是在方框里填数: 3/10+3/10+3/10=□+□+□/10=□□/10,经历分子相加转化成分子与整数相乘的过程,建构了新的计算方法。

  例1的第(2)个问题求做5朵同样的绸花一共用绸带的米数,不再从分数加法过渡到分数乘法,直接写出乘法算式,并用分数乘整数的方法计算。把例1的学习成果作为例2的教学资源,进一步体验应用分数乘整数解决相同分数连加的问题比较简便,巩固运算的意义和方法。这道例题还指导了分数乘法中的约分,兔子卡通先把分子与整数相乘,再把积约分化简。大象卡通先约分,再相乘。前一种方法学生比较熟悉,在计算分数加、减法时,经常先按法则计算,再化简结果。后一种方法由于先约分,算得的积是最简分数,而且相乘也更简单。要指导学生理解并喜欢大象卡通那样的算法,对下面继续教学分数乘分数有好处。

  二、 例2着重教学用乘法求一个数的几分之几是多少。

  10朵绸花的1/2是几朵?10朵绸花的2/5是几朵?这些问题学生在三年级(下册)认识分数里曾经解答过。那时的解答是通过102、1052这些整数乘除运算进行的。例2再次教学这些实际问题,要应用分数乘法的知识解答,概括出求一个数的几分之几是多少,用乘法计算这个结论,并用于解决其他求一个数的几分之几是多少的问题中去。

  在例2之前,乘法只用于求相同加数的和。教学例2之后,乘法还可以求一个数的几分之几。这是乘法概念的扩展。为了帮助学生理解乘法的新含义,例2在编写时注意了以下三点:

  首先是加强分数的意义。用10朵花平均分成2份,其中1份是红花的图画,对10朵的1/2作出具体而形象的解释。一方面让学生在体验10朵的1/2的意义时,想到102=5这种算法。另一方面又利用十分熟悉的102促进对10的1/2的理解。教学10朵的2/5,让学生在图画里圈出绿花,经历把10朵花平均分成5份,其中2份是绿花的操作过程,以及1052的计算过程,体会10的2/5的含义。

  然后是讲述新知识。教材说:求10朵的1/2是多少,可以用乘法计算。并写出算式101/2。还说求10朵的2/5是多少,可以用102/5。在分数意义的平台上,指出分数乘法的实际应用。利用101/2和102/5这两个实例,概括出求一个数的几分之几是多少,用乘法计算。这个结论发展了原来的乘法概念,使乘法有了新的应用领域。

  沟通新旧算法的联系,更好地理解分数乘法。如果比较算式101/2和102,能够发现它们都是求10的1/2是多少,都是把10平均分成2份。虽然运算不同,意义却是相通的。同样,算式102/5和1052都是把10平均分成5份,求其中的2份,都是求10的2/5是多少。例题在教学分数乘法的初始阶段,安排这些可对比的内容,让学生反复体验分数乘法。

  练一练加强概念。第1题先涂色表示12个圆的1/3、20个方格的4/5,感受一个数的几分之几的意义。再列式121/3、204/5计算,进行较抽象的思考并用数学方法解决求一个数的几分之几的问题。两者结合,加强了分数乘法的概念。第2题用求一个数的几分之几描述图示的数量关系,在现实问题数学问题数学方法的过程中,进一步体验求一个数的几分之几是多少,用乘法计算。

  例2列出的算式都是分数乘整数,它们的计算方法已在例1里教学。所以101/2、102/5都可以让学生计算,要提醒他们先约分,再相乘,尽量使计算过程简便些。

  三、 例3用分数乘法解决实际问题。

  例2以及练习八第6~11题都是求一个数的几分之几是多少的实际问题。编排例3继续教学解决实际问题,是因为比一个数多(或少)几分之几是较难理解的数量关系,而这些关系又普遍存在于实际问题中。无论从知识的教学还是从知识的应用考虑,都需要单独编排例题。

  解答例3的关键是理解红花比黄花多1/10、绿花比黄花少2/5的含义。从本质上讲,它们仍然是一个数的几分之几,但是比较难懂。教材用条形图呈现三种花的朵数关系,表示黄花朵数的直条刚好是10格,表示红花的直条比黄花多1格,形象地表达了红花比黄花多1/10。例题还通过红花比黄花多的是多少朵的1/10这个问题,引导学生仔细研究图意,正确理解红花比黄花多的朵数相当于黄花的1/10。从而明白,求红花比黄花多多少朵,就是求黄花的1/10是多少朵,即50朵的1/10是多少。

  比一个数少几分之几是比一个数多几分之几的变式,安排在试一试里教学。在例3的条形图上,如果把表示黄花的直条平均分成5份(每2格看成1份),绿花比黄花少这样的2份。所以,绿花比黄花少2/5的含义是: 绿花比黄花少的朵数相当于黄花的2/5。教材要求学生仿照红花比黄花多1/10那样,在条形图的直观支持下,分析并理解数量关系。通过独立解决变式的问题,实现比一个数多几分之几向比一个数少几分之几的认知迁移。

  第44页第14题分析比一个数多(少)几分之几的意义是概念专项练习。在说分数的意义时,要先指出把什么看作单位1,平均分成多少份,然后指出什么是这样的几份。如皮球的个数比足球多2/5,应该把足球个数看作单位1的量,把它平均分成5份,皮球比足球多的个数相当于这样的2份。这题要把数量关系式补充完整,数量关系式可以视为一种数学模型。从解题角度上看数量关系式,它有助于列出算式或列出方程;从思维角度上看数量关系式,把文字叙述的数量关系改写成关系式,压缩了思维过程,精简了数学语言,表达了思考结果;从教学角度上看数量关系式,它能进一步加深理解概念,及时暴露认识的偏差。如果对比一个数多(少)几分之几的理解不正确,一定会在写出的数量关系式上有所表现。仍以皮球的个数比足球多2/5为例,如果在等号右边填出皮球的个数,就是概念错误造成的。解答第15~17题,都要以正确的数量关系为前提,教材编排第14题的意图是十分清楚的。

  四、 例4、例5构建分数乘法的计算法则。

  分数乘分数的计算方法并不复杂,记住和应用算法也不难。但是,理解为什么可以这样计算却很不容易,是再次应用分数概念开展演绎推理的过程。教材编排两道例题教学分数乘分数,充分发挥数、形结合的作用,让学生体会分子相乘、分母相乘是合理的。

  构建分数乘法的计算法则,要把分数乘整数的算法纳入分数乘分数的算法之中,使前者成为一般算法里的特殊情况。教材在两道例题后的试一试里完成这个内容的教学。

  例4是首次感知分数乘分数的意义和算法。先在长方形里涂色表示它的1/2,再画斜线表示1/2的几分之几,让学生在图上体会数量关系和运算的含义,看出结果。教材依次安排了三项学习活动:第一项活动是分别说出两个长方形中画斜线部分各占1/2的几分之几,引出新的数学问题: 1/2的1/4、1/2的`3/4。得出这两个数学问题要仔细观察每个图里把1/2平均分成几份,斜线画了其中的几份,就能知道左图中画斜线的部分占1/2的1/4,右图中画斜线的部分占1/2的3/4。第二项活动要列出1/2的1/4、1/2的3/4的算式。应用初步形成的分数乘法概念,从求一个数的几分之几用乘法计算推理得出1/2的1/4可以用1/21/4计算,1/2的3/4可以用1/23/4计算。在写两道算式时,体会一个数不仅是整数,也能是分数,进一步完善了分数乘法的概念。第三项活动从图中看出两道算式的积。因为1/2的1/4是长方形纸的1/8,1/2的3/4是长方形纸的3/8,所以1/21/4=1/8、1/23/4=3/8。在看图与写出积的过程中,初步感知分子相乘的得数是积的分子,分母相乘的得数是积的分母。

  例5继续体会分数乘分数的算法。已给出了两道算式2/31/5和2/34/5,还在两个长方形里涂色表示了2/3。第一项学习活动是画图计算给出的两道算式。在画图前要先想算式的意义,才会正确画图和看到算式的积。如2/31/5是求2/3的1/5是多少,要把表示2/3的那个部分平均分成5份,用斜线画出其中的1份。斜线部分占长方形的2/15,2/15就是2/31/5的积。又如2/34/5是求2/3的4/5是多少,要把表示2/3的那块涂色部分平均分成5份,用斜线画出其中的4份,由此得到2/34/5的积是8/15。第二项活动在乘法算式的右边写出积,让学生在写2/15和8/15的时候,感受积的分子2和8是两个乘数的分子的乘积,积的分母15是两个乘数的分母的乘积。

  两道例题的教学线索不同,认知程度也不同。例4经历看图写式得积的过程,感受分子相乘、分母相乘的可能性。例5通过看式画图得积体验分子相乘、分母相乘的合理性。两道例题都让学生感受分数乘分数的算法,逐渐形成计算法则。

  第55页应用整数都能写成分母是1的分数这个知识,把2/113和45/6都改写成分数乘分数的形式,使分子相乘的积作分子,分母相乘的积作分母也适用于分数乘整数的计算,成为分数乘法的计算法则。

  五、 例6教学分数连乘的算法和技巧。

  例6用线段图表示数量关系,整理解题思路。先画一条线段表示一班做的绸花朵数,由于二班做的朵数是一班的8/9,所以把表示一班朵数的线段平均分成9份,便于画出表示二班朵数的线段。教材要求学生画表示三班做花的朵数,画的时候要分析3/4的意思,理解这里是把二班做的朵数看作单位1。通过画图就能很快知道应先算二班做的朵数。

  例题先分步列式解答,再列综合式解答。教学要以综合算式为主,因为在综合算式里要讲分数连乘的算法。关于分数连乘计算有两点内容:一是各个乘数的分子连乘的得数是积的分子,各个乘数的分母连乘的得数是积的分母。二是要尽量先约分,再相乘。就是说,要把分子、分母之间能够进行的约分都完成以后,相乘就简单了。两点内容学生都能接受,先充分地约分可能会不大适应。教学不必在为什么这样约分上纠缠,学生有计算结果应是最简分数的认识,能够理解计算过程中要尽可能地约分。教学要清楚地展示约分活动,如整数135和分母9之间的约分,分子8和分母4的约分。在练一练里还要指导不相邻的分子与分母的约分,如22/275/119/10中的分母27和分子9的约分,帮助学生逐渐掌握约分的技巧。

  六、 例7教学倒数的知识。

  倒数的知识主要是两点: 一点是倒数的概念,另一点是求倒数的方法。前一点是基础知识,后一点是计算分数除法所需要的基本技能。建立倒数概念之后,求一个数的倒数就容易了。因此,例7十分重视概念的形成以及对概念的准确把握。

  教学从寻找乘积是1的分数开始。在8个分数中能找到3对乘积是1的分数,这项貌似游戏的活动凸显了倒数是乘积为1的两个数之间的关系,这也是教学倒数概念必须掌握的内涵。教材里三个卡通的交流,说的都是两个分数相乘的积是1,突出了倒数概念的一个内涵。下面的文字叙述强调两个数互为倒数,还以3/8和8/3为例,帮助学生体会互为倒数的意思指甲是乙的倒数,乙也是甲的倒数,这是倒数概念的又一个内涵。

  求已知数的倒数分三个层次教学: 先求3/5、2/5等分数的倒数,然后求5、1等整数的倒数,最后是0没有倒数。观察互为倒数的两个分数,发现它们的分子、分母刚好互换位置,一方面进一步体会了互为倒数的两个数的乘积是1,另一方面找到了写出一个数的倒数的方法。写整数的倒数,从概念出发,寻找与整数相乘等于1的那个分数,体会如果把整数看作分母是1的分数,那么它的倒数也是调换分子、分母位置得到的那个数。教材要求学生理解0没有倒数,并作出相应的解释。这是因为0和任何数相乘都得0,不存在与0相乘能得到1的数。

  第51页第4题里有四组数。第(1)组数都是真分数,它们的倒数都是假分数。第(2)组数都是大于1的假分数,它们的倒数都是真分数。第(3)组数的分子都是1,它们的倒数都是整数。第(4)组数都是整数,它们的倒数都是几分之一的数。让学生发现这些规律,是为了巩固倒数概念,熟练掌握求倒数的方法。

【分数乘法教案】相关文章:

分数乘法教案02-02

分数乘法教案优秀10-29

精选分数乘法教案四篇06-15

分数乘法教案15篇02-10

分数乘法教案合集五篇01-18

分数乘法教案汇总六篇07-12

分数乘法数学教案02-13

分数乘法说课稿01-15

分数乘法教案集锦10篇01-25