《最小公倍数》教案(精选10篇)
作为一位杰出的教职工,常常要根据教学需要编写教案,借助教案可以让教学工作更科学化。教案应该怎么写呢?下面是小编整理的《最小公倍数》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
《最小公倍数》教案 篇1
教学内容:
教科书五年级下册第22--23页,练习四1--4题。
教学目标:
1、结合具体情境,体会公倍数和最小公倍数的应用,理解公倍数和最小公倍数的意义。
2、探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。
3、培养学生推理、归纳、总结和概括能力。
教学重点:
学会用列举法找出两个数的最小公倍数。
教学难点:
理解公倍数、最小公倍数的意义。
教学过程:
一、以趣激疑
比比谁的声音亮?请两组学生报数,并请报到2、3倍数的同学分别起立。问:你发现了什么?为什么有些人起立了两次?让学生初步感受有些数既是2的倍数又是3的倍数。(教师引导学生用“既是…又是…”来表达想法。)
师:6、12、18、24……既是2的倍数又是3的倍数,我们就可以说6、12、18、24……是2和3的公倍数。(师板书“公倍数” )
师:同学们,今天我们就一起来研究有关“公倍数”的问题。
二、创设情境,感知概念
1、两个数的公倍数和最小公倍数的概念教学
师:同学们,你们喜欢阿凡提吗?为什么喜欢他?(他聪明、机智、幽默、……)今天老师也给你们讲个阿凡提的故事:从前有个长工,在巴依老爷家干了一年也没有拿到一个铜板。长工们于是自发地组织了起来并邀请阿凡提帮他们去向巴依老爷讨工资。巴依老爷含着烟斗冷笑着说:“工资我可以给你,不过我的钱都在我的账房先生那里。从八月一日起,我要连续出去收账3天才休息一天,我的账房先生要连续收账5天才可以休息一天,你们就在我们两人同时休息的时候来吧。我肯定给钱。”阿凡提动了动脑筋,便带长工们离开了。到了某天,他真的从巴依老爷家帮长工拿到了工钱。
请大家想一想,阿凡提是哪天去巴依老爷家的?他用的是什么办法找到这个日期的?你准备如何解决这个问题?
让学生独立思考,整理解决问题的思路,并在四人小组里交流、讨论。全班汇报,交流想法。(同学们达成共识:要先分别找出巴依老爷、账房先生的休息日、再找出他们两人的共同休息日。)
同桌两人合作,通过在日历上圈一圈、本子上写一写等方式,寻求解决的办法。师巡视,并重点引导学生辨析休息日的日期应是4和6的公倍数,而不是3和5的公倍数。
全班交流,汇报。
师板书:巴依老爷的休息日:4、8、12、16、20、24、28
账房先生的休息日:6、12、18、24、30
他们八月份的共同休息日:12、24
这些数据说明了什么?如果阿凡提8日这天去巴依老爷家行吗?那18日这天去巴依老爷家行吗?引导学生明确阿凡提要把事情办好,只有在巴依老爷和账房先生都在家休息的日子去才行。所以阿凡提可以在12日和24日这两天去找巴依老爷和账房先生。
你们猜猜阿凡提会哪一天去巴依老爷家呢?
师板书:最早的共同休息日:12
师:你们真聪明,用自己的智慧解决了问题。现在我们一起用数学的眼光,来看看巴依老爷和账房先生的休息日的数据有什么特点?根据学生的发言,教师把板书“巴依老爷的休息日、账房先生的休息日、他们八月份的共同休息日”相应地改写成“4的倍数、6的倍数、4和6的倍数”。
师:“4和6的倍数”还可以怎么说?(4和6的公倍数)“公”是什么意思?(你有我也有、共有)数据“12”是什么?(4和6的最小公倍数)
你还有其他的表示方式吗?(集合圈的图示方式)
谁能说说什么是公倍数?什么是最小公倍数?教师板书课题。
2、加深学生对公倍数和最小公倍数现实意义的理解。
现在我们再来帮助小朋友解决问题。教师出示图,一些小朋友在组织跳绳活动。班长说:“我们可以分成6人一组,也可以分成8人一组,都正好分完。”请大家猜猜这些学生可能有几人?
细细体会班长说的话,你知道了什么?学生独立思考,解决。全班交流想法,要求总人数就是求6和8的公倍数。
引导学生介绍用“大数翻倍法”等,简化步骤,不断改进方法。注意学生用省略号表示不同的可能性。
师:如果这些学生的总人数在50以内,那么他们最多有几人?我们所求出的“48人”是6和8的最大公倍数吗?为什么?为什么不用学习求最大公倍数呢?(因为每一个数的倍数的个数都是无限的,两个数的公倍数的个数也是无限的。因此,两个数没有最大的公倍数。)
3、归纳求最小公倍数的方法。
师:想一想找“共同的休息日”和“总人数”的过程,说一说可以怎样求两个数的最小公倍数?(①找倍数:从小到大依次找出各个数的倍数;②找公有:把各个数的倍数进行对照找出公有的倍数;③找最小:从公有的倍数中找出最小的一个。)
4、看书22--23页内容,你还有什么问题?
师:观察一下,为什么6和8这两个数不相同,却可以写出相同的公倍数呢?公倍数与原有的这两个数有什么关系?公倍数与它们的最小公倍数又有什么关系?
教师画出数轴表示6和8的倍数,并可生动地比喻6宝宝步子小,要走3次才能到达24的位置。而8宝宝步子大,只要走两次就到达24的位置。到达24的位置后,6宝宝和8宝宝就碰面了。可见公倍数24是6和8的不同倍数。
三、解决问题,深化理解
1、互质数和倍数关系的数的`最小公倍数
师出示书第90页的“做一做”,让学生独立解决,填写在书上。
观察一下这里的每一组中的两个数有什么关系?
它们的最小公倍数与这两个数有什么关系?
(提示:3和5这两个数有什么关系?3和5的公倍数有哪些?最小公倍数是几?15与3、5这两个数有什么关系?)
提问:根据刚才的分析,你有没有发现什么规律?
(当两数成倍数关系时,较大的数就是它们的最小公倍数。当两数只有公因数1时,这两个数的积就是它们的最小公倍数。)
2、打电话游戏。
师:梁老师家的电话号码是一个七位数,从高位到低位依次是:(1)2和8的最小公倍数(2)最小的质数(3)既是6的倍数又是6的因数(4)5和15的最大公因数(5)既是偶数又是质数(6)比所有自然数的公因数多7的数(7)2和3的最小公倍数。你能说说老师家的电话吗?
师:你是怎样知道的?
师:你们分析得多好啊!真了不起!
四、课堂小结
今天你学到了什么?收获最大的是什么?你有什么学习经验介绍给大家?
五、作业
运用这单元学习的知识,也给你的朋友编一个谜语,让他们猜猜你们家的电话号码。
《最小公倍数》教案 篇2
课题一:
两个数的
教学要求
①使学生理解公倍数、的概念。
②使学生初步掌握求两个数的的方法。
③培养学生抽象概括的能力和实际操作的能力。
教学重点
理解公倍数、的概念。
教学难点
求两个数的的方法。
教学用具
投影仪
教学过程
一、创设情境
1、口答:求下面每组数的最大公约数。
3和8 6和11 13和26 17和51
2、求30和42的最大公约数。
二、揭示课题。
前面我们已学过两个数的约数和最大公约数,现在我们来研究两个数的倍数。
三、探索研究
1.教学例1。
投影出示例1 及画好的数轴。
(1)学生口述4和6的倍数,投影显示在数轴上。
(2)观察并回答。
①4和6公有的倍数是哪几个?
②其中最小的一个是多少?有无最大的?为什么?
(3)归纳并板书。
①4 和6公有的倍数有:12、24、36
其中最小的一个是12。
②也可以用图来表示。
4的倍数 6的倍数
4 8 16 20 12 24 6 8 30
4 和6 的公倍数
(4)抽象、概括。
①什么是公倍数、?(让学生说)
②指导学生看教材第71页有关公倍数、的概念。
(5)尝试练习。
做教材第73页的`做一做,先让学生分别填写出6和8的倍数,再让学生说:两个圈交叉部分应该填什么数?为什么不打省略号?填好后集体订正。
2.教学例2。
(1)出示例2并说明:我们通常用分解质因数的方法来求几个数的。
(2)把18和30分解质因数,写出短除的竖式并指出它们公有的质因数是哪些?
2 18 2 30
3 9 3 15
3 5
18=233
30=235
(3)观察、分析。
①18(或30)的倍数必须包含哪些质因数?
②如果233(或235)再乘以2或3或5得到36、54、90(或60、90、150)都是18(或30)的什么?
③18和30的公倍数必须包含哪些质因数?(2335)
(4)归纳:18 和30 的里,必须包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了,所以18 和30 的是:
2335=90
(5)教学求的一般方法。
为了简便,我们通常用短除分解质因数的方法,写成下面的形式,求,如: 18 30 并让学生分组讨论写成这种形式后该怎样做。
①每次用什么作除数去除?
②一直除到什么时候为止?
③再怎样做就可以求出了?
(6)尝试练习。
做教材第74页上面的做一做,学生解答后,点几名学生说说是怎样做的,然后集体订正。
(7)抽象、概括求的方法。
①谁能说说求的方法。
②指导学生看第74页求两个数的的方法。
四、课堂实践
1.做练习十五的第1题,让学生讲讲为什么?
2.做练习十五的第4题,先让学生也按要求去做,再回答谁做得对,谁做错了,错在什么地方?
五、课堂小结
学生小结今天学习的内容及方法。
六、课堂作业
做练习十五的第2、3题。
《最小公倍数》教案 篇3
教学内容:
人教版义务教育教科书数学五年级下册第68—69页。
教学目标:
1. 学生结合具体情境,体会并理解公倍数和最小公倍数的含义,会在集合图中表示两个数的倍数和公倍数。
2. 通过自主探索,使学生经历找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。
3. 在探索交流的学习过程中,使学生获得成功的体验,激发学生的学习兴趣。 教学重点:理解公倍数和最小公倍数的含义。
教学难点:用不同的方法求两个数的公倍数和最小公倍数。
教学过程:
一、游戏导入
同学们都知道自己的学号吧,我叫到学号的同学请起立,看看谁的反应快。(课件出示:学号是4的倍数的同学请起立;是6的倍数的同学请起立)哪些同学站起来2次?请站起来两次的同学再次起立,依次报出你们的学号。
师:想一想,他们为什么站起来两次?
生:因为他们既是4的倍数也是6的倍数。
师:你能给它起个名字吗?(板书公倍数)这节课我们就来研究关于公倍数的问题。 设计意图:说明通过报数游戏,让学生在研究现实问题的情境中学习数学,激发学生的学习积极性。
二、自主探索
(一)公倍数和最小公倍数的概念
1. 回忆学习方法
师:请同学们回忆,我们是怎样研究公因数的?
生:先分别写出两个数的因数;从这些因数中找出相同的因数就是公因数;其中最大的一个因数就是这两个数的最大公因数。
师:我们就用这样的方法来研究游戏中4和6的公倍数问题。
2. 自主探究
学生在练习本上独立找出4和6的公倍数。
3. 汇报交流
学生交流自己的学习成果,同学间互相讨论。(两个数有没有最大的公倍数?为什么?)
4. 小结概念,课件演示集合图。
12,24,36,……是4和6公有的倍数,叫做它们的公倍数。其中,12是最小的公倍数,叫做它们的最小公倍数。
设计意图:因为学生前面已经学习了公因数,这里让学生通过迁移的`方法,很快地认识到这方面的知识,从而使学生获得成功的体验。
(二)求两个数的公倍数和最小公倍数的方法。
师:请用你想到的方法找出6和8的公倍数和最小公倍数。
(1)学生独立完成,全班交流。
(2)学生交流方法有:
①列举法:先找倍数,再找公倍数,最后找出最小公倍数。
例如:6 的倍数:6,12,18,24,30,36,42,48,……
8 的倍数:8,16,24,32,40,48,……
6 和 8 公倍数:24,48,……6 和 8 的最小公倍数:24
②用集合图表示也很清楚。
③6 的倍数中有哪些是 8 的倍数呢? 或者8 的倍数中有哪些是 6 的倍数呢?
师:这么多方法,你喜欢哪一种?
通过观察,想一想:①两个数的公倍数和它们的最小公倍数之间有什么关系?
练习:18和24 15和25
三、课堂练习:
找出下面每组数的最小公倍数,看看有什么发现?
3 和 6 2 和 8 5和 6 4 和 9 3和9 5和10
交流你的发现:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,较大数是两数的最小公倍数。
你能举个例子吗?
四、独立作业:
数学书71页2题
五、课堂小结:
师:今天学习了什么知识?你有什么收获?
生:几个数公有的倍数叫做这几个数的公倍数。其中最小的一个叫做这几个数的最小公倍数。
找两个数公倍数和最小公倍数的方法等等。
板书设计:
《最小公倍数》教案 篇4
教学过程:
一、情景导入
1、从我们学校到中山公园可乘坐A、B两种车,A车大约每隔400米设有一个车站,B车大约每隔600米设有一个车站。天气越来越热了,我们少先队员开展送爱心活动,在这条线路上摆几个慰问点,为驾驶员、售票员送上毛巾擦擦汗、送上凉水解解渴。现在请你们小组商量一下,慰问点设在哪里可以同时慰问两条线路的司售人员,并且要说明你的理由。
2、在这里,我们找A、B两车的车站就是运用了有关倍数的知识,那么,你是否知道同时有两个车站的这几个数字表示的是什么呢?
出示课题:公倍数
谁能用自己的话说一说什么叫公倍数?
这一个是最小的,我们又称它为什么?
补充课题:最小公倍数
谁能再来说一说什么叫最小公倍数?
今天我们就来研究。
二、探究
1、看了这个课题,你想在这节课中了解些什么?请学生写在纸上,并贴到黑板上。
2、四人一组合作解决1--2个问题,举例说明,组长笔录。可以翻书请教,在P69--P71。
3、成果汇报:(由学生任选一种方法)
(1)公倍数有多少个?
(2)求最小公倍数的几种方法:
①枚举法:根据学生举例填写集合圈并说出各部分所表示的内容(参见下左图):
②分解质因数:如:12与30的最小公倍数(见上右图)
最小公倍数是两个数全部公有质因数与各自独有之因数的乘积。
[12,30]=2×3×2×5=60
从这两个分解质因数的`式子里你能看出12与30的最大公约数是几?
最大公约数与最小公倍数之间有什么关系?参见下左图。
最小公倍数是两个数的最大公约数与各自独有质因数的乘积。
短除法:如求:36和45的最小公倍数,参见上右图。
讨论:与求最大公约数比较有什么异同之处?
短除法与分解质因数有什么联系?
任选一种方法,求下列各组数的最小公倍数(第一组必做,其它可任选,看谁做的又快又多又正确):
16和20;65和130;4和15;18和24。
得出两个特殊情况:当两个数是互质数时,最小公倍数是这两个数的乘积;当两个数有倍数关系时,最小公倍数是较大的数。
4、总结:今天你们根据自己所提出的问题进行了研究学习,每个人的研究都非常成功,对于今天所学的内容还有什么疑问?
三、回家作业布置(感兴趣的同学做)
世纪大道是浦东新区最为壮观的轴线大道,它横贯陆家嘴金融贸易区,起于东方明珠电视塔,止于花木行政文化中心,全长4200米。请你当一位设计师,在大道的一旁每隔()米种一棵香樟,在大道的另一旁每隔()米种一棵银杏,那么,每()米一棵香樟和一棵银杏正好面对面,这样的情况共有()组相对的树木。
教学反思:
我们的教学是要真正地为学生服务,教师的职责不是将知识灌输给学生,而是在学生在知识的海洋中遨游时帮他们把好舵。讲台不是老师的,而是师生共同的,谁都能在这里发表自己的见解。学生只有在被肯定、被信任的时候,才能提高学习兴趣、学习动机。
《最小公倍数》教案 篇5
教学目标:
理解最小公倍数的概念,理解求两个数最小公倍数的算理,掌握用短除法求最小公倍数的方法。
教学重点:
最小公倍数的概念。
教学难点:
两个数最小公倍数的算理。
教法:
新授、小组合作、自主探究
学法:
练习、自学、小组合作
课前准备:
课件
教学过程:
一、定向导学(3分钟)
(一)复习
1、什么是最大公因数?
2、最大公因数与两个数的质因数之间有什么关系?
3、怎样求两个数的最大公约数?
(二)出示目标
理解最小公倍数的概念,理解求两个数最小公倍数的算理,掌握用短除法求最小公倍数的方法。
二、自主学习(6分钟)
自学内容:68-69页内容
自学方法:先独立看书,思考问题,再小组交流老师提出的问题(先从4号、3号开始回答,组长负责组织,提问,副组长负责记录,以及和老师的交流。)
自学思考:
1、什么是公倍数?最小公倍数?并背诵。
2、如何求两个数的.最小公倍数?
3、两个数的公倍数和他们的最小公倍数之间有什么关系?
4、两个数有没有最大的公倍数?为什么?
三、合作交流(15分钟)
1.最小公倍数的概念。
(1)学生先独立思考。
(2)再合作讨论自己是如何做的。
(3)全班交流。
2.小结:6,12,18,… 是 3 和 2 公有的倍数,叫做它们的公倍数。其中,6 是最小的公倍数,叫做它们的最小公倍数。
3.举例说明:求 6 和 8 的最小公倍数。
(1)学生独立完成,全班交流。
(2)学生的方法有:①列举法:先找倍数,再找公倍数,最后找出最小公倍数。
例如:6 的倍数:6,12,18,24,30,36,42,48,…
8 的倍数:8,16,24,32,40,48,…
6 和 8 公倍数:24,48,…
6 和 8 的最小公倍数:24
②大数翻倍法:8,16,24,…
6 和 8 的最小公倍数:24
③分解质因数法:
8=2×2×2 6=2×3
8 和 6 的最小公倍数包括 8 和 6 的公有质因数和各自独有的质因数。
④画图法。
4.用喜欢的方法求 12 和 15 的最小公倍数。
学生汇报。
5.用分解质因数法求 18 和 8 的最小公倍数。
四、质疑探究(4分)
求下面每组数的最小公倍数,看看有什么发现?
4 和 5 13 和 7 48 和 16 17 和 85
小结:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,大数是两数的最小公倍数。
五、小结检测(6分钟)
(一)小结:谈谈你本节课的收获?
(二)检测:
1.求下面每组数的最小公倍数。
[15,9] [18,24] [18,27] [14,21]
[32,40] [25,45] [26,39] [54,63]
2.下面的说法对吗? 说一说你的理由。
(1)两个数的最小公倍数一定比这两个数都大。
(2)两个数的积一定是这两个数的公倍数。
六、堂清(6分钟)
找出下列每组数的最小公倍数。你发现了什么?
3和6 2和8 5和6 4和9 3和 9 5和10
《最小公倍数》教案 篇6
教学目标:
1、理解两个数的公倍数和最小公倍数的意义。
2、探究找公倍数的方法,会利用列举法找出两个数的公倍数和最小公倍数。
3、培养学生自主探究的精神和观察、分析、概括的能力;让学生体会数学与生活的紧密联系,树立学好数学的信心。
教学重点:
理解两个数的公倍数和最小公倍数的意义。
教学难点:
探究找公倍数和最小公倍数的方法。
教具准备:
多媒体课件
教学过程
一、创设情境
教师谈话:,乐乐就放假了,很想爸爸妈妈带她出去玩。可乐乐的妈妈从七月一日起每工作3天休息一天,爸爸从七月一日起每工作5天休息一天,他们打算等爸爸妈妈同时休息时,全家一块儿去西湖公园玩。(出示:七月份的日历)那么在这一个月里,他们可以选哪些日子去呢?你会帮他们把这些日子找出来吗?
请学生相互议论后,教师提示:同桌两位同学可分工合作来解决这个问题。一位同学找乐乐妈妈的休息日,另一位同学找小兰爸爸的休息日,然后再把两人找的结果合起来对照一下,就可以很快找出乐乐爸爸和妈妈共同的休息日了。
根据学生的回答,教师逐步完成以下板书:
妈妈的休息日:4、8、12、16、20、24、28
爸爸的休息日:6、12、18、24、30
他们共同的休息日:12、24
其中最早的一天:12
二、尝试探讨
1、几个数的公倍数和最小公倍数的概念教学
我们一起来看妈妈的休息日,把这些数读一读(学生读数),你发现这些数有些什么特点?
师:对了,这些数都是4的倍数。(教师顺势把板书中“妈妈的休息日”改成了“4的倍数”。)
师:刚才我们是在30以内的数中,依次找出了这些4的倍数,如果继续找下去,4的倍数还有吗?有多少个?(学生举例,教师在4的倍数后面添上了省略号。)
我们再来看“爸爸的休息日”有什么特点?6的倍数有多少个?(把“爸爸的休息日”改成“6的倍数”并添上省略号)
师:下面我们再来看“他们共同的休息日”,这些数和4、6有什么关系?
师:对了,这些数既是4的倍数,又是6的倍数,你能给它一个新的名字吗?(把板书中“他们共同的休息日”改为“4和6的公倍数”。)
师:刚才我们从30以内的数中找出了4和6的公倍数有12、24,如果继续找下去,你还能找出一些来吗?可以找多少?(学生举例,老师根据学生回答,在后面添上省略号。)
师:这“其中最早的一天”,我们一起给它起个名字,叫什么?
(根据学生回答,把板书中“其中最早的一天”改为“4和6的最小公倍数”。)
板书:
4的倍数:4、8、12、16、20、24、28、……
6的倍数:6、12、18、24、30、……
4和6的公倍数:12、24、……
4和6的最小公倍数:12
教师谈话:4的倍数、6的倍数、4和6的'公倍数、最小公倍数,我们还可以用这样的图来表示:
出示集合图:
4的倍数6的倍数4的倍数6的倍数
4和6的公倍数
三、深化概念
师:通过找“共同的休息日”,我们分别求出了这组数的公倍数和最小公倍数。
请同学们把书翻到51页看例子,填一填
师:什么是公倍数?
生:两个数公有的倍数就是他们的公倍数。
师:公倍数有多少个?
生:有无数个,找到两个数的一个公倍数,用它去乘2、乘3……所得的积一定是这两个数的公倍数。
师:我们发现任意两个数都有公倍数,而且每组公倍数的个数都是无限的。那么三个数之间是否也有公倍数?四个数呢?五个数呢?
生①:举例:2、4和5的公倍数是20。
生②:无论几个数,只要相乘,它们的乘积一定是它们的公倍数。
师:那你能找出最大的或最小的公倍数吗?
生:没有最大的,只有最小的。
师:为什么?
生:因为公倍数的个数是无限的,所以没有最大公倍数。谁能用自己的话说一说什么叫公倍数?什么叫最小公倍数?
板书:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
这就是我们今天要学习的内容。(揭示课题:最小公倍数)
师:那么我们刚才是怎么找出最小公倍数的呢?
生说,师写(列举法)
[点评:通过引导学生对具体问题作进一步研究,帮助学生加深对公倍数、最小公数意义的理解,使表象更加清晰。由此让学生亲身经历了一个从具体到抽象的数学化的过程。]
4.[出示]找最小公倍数
2和69和186和245和353和9
3和57和54和99和11
让学生找出每组数的公倍数。
师:有的同学找得很快,能给大家说一说你的方法吗?你发现了什么?
小组讨论,之后汇报。
生:如果大数是小数的倍数,那么它们的乘积也是它们的公倍数。
生:2和6的最小公倍数是12,并不是它们的乘积。
生:大数要是小数的倍数,大数就是它们的公倍数,而且是最小公倍数。例如2和6,9和18,最大的数都是它们的最小公倍数。
师:你们还能发现了什么?
生③:第二排每一组都是互质数。例如3和5两个数是互质数。互质数的最小公倍数是它们的乘积。
师总结
师;你们能举一些这类的例子吗?
5、请同学们用刚才的发现做书本52页的第3题,求下面各组数的最小公倍数
3和610和83和95和46和59和42和76和8
[点评:教师直接把找特殊情况下两个数最小公倍数这一问题抛给学生,通过学生练习、让学生不断发现不断改进。不同的学生就会有不同的想法,教师却从不给出结论性的评价,而是始终鼓励他们大胆猜测验证,互相补充说明,学生真正投入探究学习的氛围中,体验着学习给他们带来的快乐。]
四、利用最小公倍数解决生活问题,
出示:
(1)“五(1)班同学参加植树劳动,按6人一组或8人一组都正好分完。五(2)班参加植树的至少有多少人?”
齐读两次,找出题中的关键字,引导中理解题意后放手让生自己完成,同桌间比对。
(2)人民公园是1路和6路汽车的起点站。1路汽车每3分钟发车一次,6路汽车每5分钟发车一次。这两路汽车同时发车以后,至少再过多久又同时发车?
(设计理念:借助于生活实例进行对知识的应用,这样不仅可以让生对抽象概念得以理性认识,而且也能切身的体会到数学知识是为生活服务的,在分析中我紧抓关键字突破难点,这样可以让生学会解决问题的技巧。)
五、小结
今天学习了什么内容?什么叫最小公倍数?
我们今天学习了求最小公倍数的哪几种情况?
怎样才能很快地求出它们的最小公倍数?
板书:找最小公倍数
一般关系列举法
倍数关系较大数
特殊关系
互质关系两数的乘积
《最小公倍数》教案 篇7
教学目标:
1、结合具体情境,理解公倍数和最小公倍数的意义,体会公倍数和最小公倍数的运用。
2、探究找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。
3、能积极探究生活中的数学问题,体会数学问题的探索性和挑战性。
教学重点:
探究找公倍数的方法。
教学难点:
会利用列举法等方法找出两个数的公倍数和最小公倍数。
教学过程:
一:复习导入,初步感受
师:同学们,我们已经认识了倍数,谁能举例说几个3的倍数?
生:3的倍数有3、6、9、12、15,…
师:2的倍数呢?
生:2的倍数有2、4、6、8、10,…
师:3和2的最小倍数各是几?
生:都是它们本身。
师:那么,为什么在说倍数时要加省略号呢?
生:一个数的倍数个数是无限的,所以要加省略号。
(师出示教材第51页数表,在这张数表中有50个数。请同学们用△标出4的倍数,用○标出6的倍数。)
(生操作圈数)
师:谁能说说4的倍数?
生:4的倍数有4、8、12、16、…,48。
师:6的倍数呢?
生:6的倍数有6、12、18、24、30、…,48。
师:在圈数时,你们发现什么?
生:我们发现有些数既是4的倍数,又是6的倍数。
师:能举例说明吗?
生:如12、24、36、48。这些数既用△标出,又用○标出,所以它们既是4的倍数,又是6的倍数。
二、顺理成章,概念
师:那么,能否给这些数起一个名字吗?
生1:我起的名字叫共同的倍数。
生2:这个名字太长了,叫公倍数更好.
师:这个名字起的好,在数学上把这些数都叫做公倍数,那么谁来一下什么叫做公倍数?
生3:公倍数就是这几个数共同有的倍数.
师:那么,在这几个数的公倍数中,谁给"12"也起个名字?
生4:它是最小一个,所以它的名字叫最小公倍数.
师:有没有最大公倍数呢?
(师生共同讨论)
三.方法,实际应用
师:请同学们回顾一下,刚才我们是用什么方法引出公倍数的?
(学生的发言,板书:枚举法)
师:在寻找最小公倍数时,经常用到枚举的方法。下面请用这个方法作第51页的填一填。
(学生练习,在他们汇报时,,教师应指导集合圈的写法。)
师:谁来汇报的结果?
(学生展示各自的练习)
师:在做这一题时,还有其他的想法吗?
生1:我认为用书上的方法寻找最小公倍数太麻烦,所以我不用这个方法也能求出6和9的最小公倍数。我在想6的倍数,想到8这个数时,就发现它也是9的倍数,那它一定是6和9最小公倍数,这样就不用写到50了。
生2:我同意他的看法,不过应该从9的倍数找起会更快。因为9的倍数比6的倍数大,会找的`更快。
生3:我发现3和5的最小公倍数是15,就是3×5得到的,所以求最小公倍数就用两个数相乘就行了。
生4:我不同意,6和9相乘得54,而6和9的最小公倍数时18。
生5:我发现54要是除以6和9的最大公因数3就是18了。
师:那么,,同学们对这几位同学的发现有什么看法?不妨通过几组数来考证一下这几位同学的想法,从而一下求最小公倍数的几种方法。
(出示教材第52页第3题,学生独立求最小公倍数,然后在小组里讨论有什么发现。师生共同求3种类型的数的最小公倍数的方法。)
(出示教材第52页的第4题,讨论解决具体的实际问题。)
四、收获
师:今天的学习你有什么收获?
师:()同学们不仅很好地理解了公倍数和最小公倍数的含义,又掌握了求公倍数和最小公倍数的的方法。
《最小公倍数》教案 篇8
教学目标
1、会利用列举法和短除法找出两个数的公倍数和最小公倍数。
2、理解分倍数和最小公倍数的含义。
3、在探索中发现,在发现中体验数学的自身规律的魅力,从而激发学生持久的学习兴趣。
教学难点
理解两个数的公倍数和最小公倍数的意义,能正确地运用和列举法和短除法确定两个数的最小公倍数。
教学方法
合作学习法、小组探究法、知识迁移法
教学准备
复习题
教学过程:
一、温故知新
1、什么叫公因数?
2、什么叫最大公因数?
3、写出下列各组的最大公因数
3和7 4和6 9和18 12和30
引出新课
二、师生共研
1、公倍数和最小公倍数的.认识。
以4和6这组数为例,就在50以内数表中找一找。你发现了什么?
(1)4的倍数:4、8、12、13、20、24、28、32、36、40、44、48。
(2)6的倍数:6、12、18、24、30、36、42、48。
(3)两个都有的:12、24、36、48。
引出课题:公倍数和最小公倍数
2、怎样找出两个数的最小公倍数介绍短除法
(1)让学生以小组的形式探讨,看看如何用短除法来求两个数的最小公倍数。再交流。
(2)反馈时围饶着以下几个方面交流:
短除式中除数是2的什么数?
为什么在得出商2和3时不再往下除?
4和6的最小公倍数是怎么计算的?
(3)师生共同探究与交流。
(4)试一试:你能找出12和16的公倍数和最小公倍数吗?
让学生用自己喜欢的方式找一找,再用另一种验证。
重点反馈短除法。
3、探究特殊关系的两数怎样确定它们的最小公倍数。
先让学生独立完成
思考后交流自己的发现
三、全课总结
1、这节课我们交的新朋友是什么?你现在对它知道多少?
2、怎样找两个数的最小公倍数?
(1)先定关系
(2)确定用什么方法找
3、有什么问题或发现?
四、布置作业:
2、3、4、5
《最小公倍数》教案 篇9
教学目标:
1、使学生在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。
2、使学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。
3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。
教学准备:
长3厘米、宽2厘米的长方形纸片16张,边长6厘米和8厘米的正方形纸片;练习四第4题的方格图、红棋和黄棋。
教学过程:
复习
今天我们所学的知识与倍数有关,这在四年级我们已经学过了,同学们还记得吗?
那谁能连续的说几个2的倍数?有什么特征?3的倍数呢?
看来大家四年级的知识掌握的不错,那么今天我们就再来继续研究关于倍数的知识。
一、经历操作活动,认识公倍数
1、操作活动
提问:(在投影仪上摆出长3厘米、宽2厘米的长方形纸片,以及边长6厘米和8厘米的`正方形纸片)用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米和8厘米和正方形,能铺满哪个正方形?请大家猜猜看
拿出手中的图形,动手拼一拼。
学生独立活动后,指名在黑板上用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米和8厘米的正方形。
提问:通过刚才的活动,你们发现了什么?(用上面的长方形纸片可以正好铺满边长6厘米和正方形,但不能正好铺满边长8厘米的正方形)
引导:用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每条边各铺了几次?怎样用算式表示?(在边长6厘米的正方形下面板书:6÷3=2,6÷2=3)
铺边长8厘米的正方形呢?每条边都能正好铺完吗?(在边长8厘米的正方形下面板书:8÷3=2......2,8÷2=4)
2、想像延伸
提问:根据刚才铺正方形过程,在头脑里想一想,用长3厘米、宽2厘米的长方形纸片还能正好铺满边长多少厘米的正方形?在小组里交流。
生可能的想法:
⑴能正好铺满边长12厘米、18厘米、24厘米......的正方形。
在学生回答后,提问:你是怎么想的?(引导学生明确:12、18、24......除以2和3都没有余数)
⑵能正好铺满的正方形,边长的厘米既是2的倍数,又是3的倍数。
如果学生说不出这一点,可提问:6、12、18、24......这些数与2有什么关系?与3呢?
3、揭示概念
讲述:6、12、18、24......既是2的倍数,又是3的倍数,它们是2和3的倍数。(板书:公倍数)
说明:因为一个数的倍数的个数是无限的,所以两个数的公倍数的个数也是无限的,同样可以用省略号来表示。
引导:用长3厘米、宽2厘米的长方形纸片不能正好铺满边长8厘米的正方形,说明什么?(8不是2和3的公倍数)为什么?
二、自主探索,用列举的方法求公倍数和最小公倍数
1、自主探索
提问:6和9的公倍数有哪些?其中最小的公倍数是几?你能试着找一找吗?
学生自主活动,然后在小组里交流。
生可能想到的方法:
⑴依次分别写出6和9的公倍数,再找一找。
提问:你是怎样找到6和9的公倍数的?又是怎样确定6和9的最小公倍数的?
⑵先找出6和倍数,再从6的倍数中找出9的倍数。
⑶先找出9的倍数,再从9的倍数中找出6的倍数。
引导:第⑵种和第⑶种方法有什么相同的地方?你觉得哪一种方法简捷一些?
2、明确6和9的最小的公倍数是18后,指出:18就是6和9的最小公倍数。(完成课题板书)
3、用集合图表示。
说明:我们可以用下图表示两个数的公倍数。先出示一个圈,表示6的倍数。想一想,里面可以填哪些数?旁边一个圈,表示9的倍数。想一想,里面可以填哪些数?指出:6和9的公倍数要填在两个圈相交的部分。想一想,里面应该填哪些数?
引导:12是6和9的公倍数吗?为什么?27呢?哪几个数是6和9的公倍数?
4、做“练一练”
要求:(出示数表)先在2的倍数上画“△”,在5的倍数上画“○”,然后填空。
集体交流:2和5的公倍数有什么特点?(是10的倍数,个位是0的自然数)
三、巩固练习,加深对公倍数和最小公倍数的认识
1、做练习四的第1题
要求:把50以内6和8的倍数、公倍数分别填在题目下面的圈里,再找出它们的最小公倍数。
提问:这里在图中要写省略号吗?为什么?如果没有“50以内”这个前提条件呢?
2、做练习四第2题
要求:先在表中分别写出两个数的积,再填空。
引导:4与一个数的乘积都是4的什么数?5、6与一个数的乘积呢?怎样找到4和5的公倍数?填空时为什么要写省略号?
3、做练习四的第3题
要求:自己找出每组数的最小公倍数。
集体交流,说说是怎样找的,让学生进一步掌握用列举法找两个数的最小公倍数。
四、全课小结
提问:今天学习的内容是什么?什么是两个数的公倍数和最小公倍数?怎样找两个数的最小公倍数?
引导:你还有什么疑问吗?
五、游戏活动
要求:下面我们来做个游戏。出示练习四第4题:红棋每次走3格,黄棋每次走4格。你能在两种棋都走到的方格里涂上颜色吗?在小组里先玩一玩,再想一想。
提问:涂色的方格里写的数与3和4有什么关系?
《最小公倍数》教案 篇10
教学内容:书P.22~23页,例1、例2、练一练,练习四第1~4题。
教学目标:
1.让学生通过具体的操作和交流活动,认识公倍数与最小公倍数,会用举例的方法求10以内两个数的最小公倍数。
2.让学生经历探索和发现数学知识的过程,积累数学活动的经验,进一步培养自主探索与合作交流的能力。
3.让学生参与学习活动的过程中,体验学习和探索活动的乐趣,增强对数学学习的信心。
教学重点:
认识公倍数与最小公倍数,会求10以内两个数的最小公倍数。
教学难点:
看懂并会填写用集合图表示的两个数的倍数和公倍数,理解在不同情境下倍数、公倍数的有限与无限。
教具准备:
1、长3厘米、宽2厘米的长方形纸片。
2、边长6厘米和8厘米的正方形。
教学过程:
一、游戏引入,认识公倍数。
游戏激趣
师:今天是什么日子?(圣诞节)
对啊,圣诞老爷爷来给我们送礼物了,瞧!(出示图)
我们每一位同学对应的都有一个学号,学号是3的倍数的同学,你们的礼物在圣诞帽里;学号是5的倍数的同学,你们的礼物在圣诞袜里。(请请学生站一站,选一两个说一说)(出示图,分别在两幅图的下面写上学号。)
观察一下,谁是今天最幸运的,为什么?(15、30号)为什么?
(图片:把15、30移至中间,闪烁。)
师:像这样3、5、15这样的数有怎样的关系呢?今天这节课我们就来研究这样的问题。
二、教学例1
1、操作活动。
出示边长6厘米、8厘米的两个正方形。
如果用一些长3厘米、宽2厘米的长方形纸片分别铺在这两个正方形上,你觉得可以正好铺满哪个正方形?
2、学生分组活动,在小组里铺一铺,说一说。
3、汇报交流。
通过刚才的活动,你们发现了什么?
为什么用这样的长方形纸片能正好铺满边长6厘米的正方形?
引导学生观察正方形边长与长方形的长、宽之间的关系来回答:
(1)用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每条边各铺了几次?怎样用算式表示?(出示图)
(2)铺边长8里面的正方形呢?每条边都能正好铺完吗?
(8÷3=2……2,8÷2=4)(出示图)
(3)讨论:还能有边长是多少厘米的正方形也能用这样的长方形来铺满?(板书:12厘米、18厘米、24厘米……)
说说你的理由。
明确:12、18、24……除以2和3都没有余数。
演示:铺满边长是12厘米的正方形(师:横里铺几个?铺了几行?)
(4)6、12、18、24……这些数与2有什么关系?与3呢?(6、12、18、24……既是2的倍数,又是3的倍数。)
4、只要正方形的边长既是2的倍数,又是3的倍数,这样的长方形纸片就能正好把它铺满。6、12、18、24……既是2的`倍数,又是3的倍数,它们是2和3的公倍数。(板书)
(板书课题:公倍数)
5、2和3的公倍有多少个呢?为什么?
(用省略号来表示)
6、8是2和3公倍数吗?为什么?(尽管8是2的倍数,但8不是3的倍数,所以8不是2和3的公倍数)
同学们,要解决例1这样的题目就要学会找两个数的公倍数。那么怎样去找两个数的公倍数呢?
三、教学例2
1、出示例2。
6和9的公倍数有哪些?(其中最小的公倍数是几?)(后面出示)
(1)你准备怎么去找,同桌交流方法
师:会了吗?请你们在草稿本上写一写。
师生交流,说说你是怎样想的?(展示)为什么它们是6和9的公倍数?
(2)有没有不一样的方法?(讨论)
(师提示:先找9的倍数,想一想6和9的倍数公倍数是不是都在9的倍数里?能不能从中找出6的倍数来?)
学生在草稿本上写一写,交流(展示)
:可以先找9的倍数,再在9的倍数里找6的倍数。
(3)学生说另一种方法:先找6的倍数……
学生在草稿本上写一写,交流(展示)
2、6和9的公倍数中最小是几呢?(显示于例题上)
因此我们就说18就是6和9的最小公倍数。(板书课题:最小公倍数)
3、我们有这样的3种方法找两个数的公倍数,请你一下这3中方法。
4、那么(指着板书)2和3的最小公倍数是多少?
5、我们可以用集合图来表示6的倍数、9的倍数,6和9的公倍数。
(出示集合图,一半一半地、边问边出示)
(课件显示将两个集合圈向中间靠拢,形成交叉状。)
师:中间部分应该填什么?(课件显示将两个集合圈中的相同的倍数移动到交叉部分,并在下面标出“6和9的公倍数”)
师:左边圆圈里的数表示?右边圆圈里的数表示?两个圆圈相交的部分又表示什么?(课件闪烁圆圈)
6、完成练一练。
先在2的倍数上画“△”,在5的倍数上画“○”,然后完成填空。
汇报交流。(展示)
师:说说你是怎样想的?
问:这里的省略号哪些同学点了?哪些同学没点?
师:像这样没有明确范围的我们可以加上省略号。
问:2和5的公倍数有什么特点?(是10的倍数,个位上是0的自然数)
四、巩固练习
1、完成练习四第1题。
(1)独立完成。
(2)汇报校对。(先填6和8的公倍数)
这里需要写省略号吗?为什么?
2、完成练习四第2题。
(1)出示空白表,师生交流怎样看、怎样填?
(2)学生完成填表。
(拓展)
师:这里都是求两个数的最小公倍数,如果让你求4、5、6三个数的最小公倍数,是多少呢?想一想。
补充表格,学生观察。
师:两个数有公倍数,三个数也有公倍数,四个、五个、……同样也有公倍数。
五、课堂
今天学习了什么内容?说说看什么是两个数的公倍数和最小公倍数?
游戏:(出示)圣诞帽、圣诞袜
4的倍数6的倍数
师:现在学号是几的同学最幸运?
怎样设计让尽量多的人幸运?
【《最小公倍数》教案】相关文章:
《最小公倍数》教案03-03
公倍数与最小公倍数教案02-26
精选《最小公倍数》教案3篇04-11
《最小公倍数》教案汇编7篇04-18
有关《最小公倍数》教案3篇04-15
【精品】《最小公倍数》教案四篇04-23
【精华】《最小公倍数》教案三篇04-24
【热门】《最小公倍数》教案3篇04-24
【精华】《最小公倍数》教案四篇04-25