八年级下册数学教学反思

时间:2024-05-23 08:06:42 教学反思 我要投稿

八年级下册数学教学反思

  身为一名人民教师,我们需要很强的课堂教学能力,借助教学反思我们可以快速提升自己的教学能力,那么你有了解过教学反思吗?以下是小编收集整理的八年级下册数学教学反思,希望对大家有所帮助。

八年级下册数学教学反思

八年级下册数学教学反思1

  一、注重新旧知识的延续性。

  通过复习、回忆已经学过的“菱形的性质及判定”为新内容进行铺垫。同时,也为知识间的迁移作了伏笔。《课标》强调学生数学学习的过程是建立在经验基础上的一个主动建构的过程。

  二、创设问题情景,学生自主探究。

  《数学课程标准》强调指出:“学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。”实施“新课标”,就是要改变以往的学生被动地接受知识的陈旧的学习方式,让学生自主学习、自主探索、自主感悟,自主解决问题。这一堂课,学生自始至终地进行自主学习、自主探索、自主感悟,自主解决问题。教师不再是知识的灌输者,教师的作用只是学生“学习的组织者、引导者与合作者”;学生也不再是接受知识的容器,而是知识的探索者、发现者。例如,在证明定理部分,提出了“你能证明它们吗”问题后,就让学生去自主思考探究,自主解决自己需要解决的问题。然后,老师“出示例题”:“已知菱形边长及一条对角线,求另一条对角线”问题,让学生自主探索求解。学生经过思考、合作探索、尝试列式求解后,终于自行解决了这一问题。而在这一学习过程中,老师只作积极的组织者和理智的引导者,不作任何的解答。

  三、小组合作,自主探究。

  任何一项科学研究活动或发明创造都要经历从猜想到验证的.过程。“怎样的图形是正方形?”,这个问题如何回答,这正是小组合作的契机。通过小组内交流,使学生认识到可以通过多种途径来验证,让学生在小组内完成从特殊到一般的研究过程。然后再小组汇报研究结果以及存在问题。数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。这堂课中的全班交流教学环节,不仅能使学生畅所欲言、共同发展,而且真正体现了学生是学习的主人,是学习的主体这一现代教育的主题。

  四、注重数学思想方法,让学生受到数学思想的熏陶与启迪。这节课在教学过程中渗透了“变与不变”、转化等数学思想。

  五、注重数学知识与生活的联系,注重培养学生的应用意识。

  在学生新知巩固,知识应用拓展阶段,教师出示现实生活中的物体:方位图和交通警示牌,体现了“数学来源于生活”的理念,同时也突出了“数学注重应用”的理念。

  六、不足之处

  (1)在“想一想”出示“怎样判别一个平行四边形?”这个问题后,只给学生讨论,没有花费时间去证明以及做练习,造成课后作业错误比较多。

  (2)例题后的总结语句太少,这也是我听老教师课后最大的体会。在以后的教学中必须注重习题前后的分析与总结,这一部分有益于学生知识的掌握。

八年级下册数学教学反思2

  今天上完一次函数的图像这节课,颇有感慨。一次函数的图像在本章起着很重要的作用,因为只有掌握了函数图象的画法,学生才能够画出函数图像,从而从图像中学习一次函数的性质,也为后一节的一次函数与二元一次方程,一次函数与一次不等式打下基础.

  我在设计本节课时,仔细研究了新课标,认为本节的重点是:

  1、通过列表、描点、连线教会学生会画一次函数的图像,并与学生一起总结一次函数的`图像,画一次函数图像需要几个点,一次函数的图像有什么特征;

  2、让学生理解图像上的点的坐标与函数表达式之间的关系。教学环节设计分为三步:1、通过复习再次理解函数图像的概念,并通过举例让学生了解,让学生明确函数图像的重要作用。2、通过实例向学生展示如何画一次函数图像,并从中总结出画函数图像的一般步骤.先由学生归纳,后由老师总结出画函数的三个步骤:1、列表,2、描点,3、连线。

  3,让学生练习如何画图,并从中发现学生可能存在的问题,作个别指导,并抽出典型问题进行讲解。

  4,通过课件一步步和学生探讨画一次函数图像的步骤。展示不同函数之间的关系。特别是平行,平移的关系,由课件很直观的展示出来。有助于学生的理解。

  在教学过程中总会有这有那的一些不尽人意的地方,有时候是语言表达不当或不严密。例如这节课我在组织教学时,就只给学生讲了一次函数的k相同时,函数图像是平行关系,但是我没有引导学生发现怎样得到这些互相平行的直线。我在讲课中没组织好课堂,学生有些沉闷不与老师配合,有极少同学不愿意动手画函数图像,也有一些同学认为太简单,不愿画。如何使语言更加生动从而吸引学生的注意力是以后备课需要仔细研究、推敲的地方。此外,还是没能改掉不好的习惯,我由于讲得太多,课堂练习较少,同学们自主学习的时间还是太少,以后尽可能少讲,由学生自已完成知识的建构。

八年级下册数学教学反思3

  在讲授了《反比例函数》后,从教学设计和课堂授课两方面谈谈自己的一点反思。

  一、教学设计方面

  首先我在学案的设计上做了改进,没有象以前那样把自己的上课流程全部体现在学案上,而是让学案仅仅起到一个导学的作用,提纲挈领式,在学案上出现的问题比较多,而把问题的答案留给学生自己去总结,我认为这样可以激发学生学习中的热情,让他们在学习的过程中不断完善学案。

  其次就是在新知识的展现形式方面做了改进,以前的学案我总是把本节课的知识点在学案上列出,通过教师的讲解让学生从学案上划出来然后背诵,学生没有经历新知识生成的过程,虽然在当堂课上学生看起来对新知识理解的较好,但过一段时间后遗忘的很快。本次的学案设计,我把新知识的学习定位为自主学习,在学案上提出了三个问题,让学生自己通过看书和小组内交流找出三个问题的答案,并把答案总结在学案上的空白处,使学生通过自学课本和小组交流,经历概念的生成过程,培养学生阅读课本和总结问题的能力。

  二、课堂教学方面

  我认为本堂课比较成功的做法有以下几个方面

  1、我觉得教师角色转变的重心在于使传统意义上的教师教和学生学,不断让位于师生互教互学,彼此形成一个真正的“学习共同体”。本节课,若按老的教学路子,应先告诉学生什么是反比例函数,让学生把反比例函数的性质背下来,最后应用反比例函数的性质去解决实际问题,这样就完成了教学任务。而新的课程标准则要求教师引导学生经历从具体情境中抽象出数学知识的过程,并在这个过程中与学生平等地交流和给以恰到好处的点拨。在这点上,我认为自己处理的比较好。先通过两个例子让学生初步了解什么是反比例函数,让学生自己概括反比例函数的意义,画反比例函数以及将它与正比例函数比较,再通过小组讨论学生就自然而然的得出了反比例函数的的特征,且印象深刻。

  2、能驾驭教材,对学生提出的问题有灵活的解决办法并且在小组合作学习产生争议的时候,教师能放能收,处理的到位,符合新的课堂教学理念。

  3、在处理课堂练习时,让学生选择自己喜欢的问题来回答,照顾了学生的个体差异,关注了学生的个性发展,真正成为学生学习的组织者、参与者、合作者、促进者。特别是在处理练习时,我让学生充当老师讲解自己的观点,赵婷同学回答的非常好,不仅思路清晰,而且数学语言应用的非常准确,使我看到学生的智慧,听到了富有思想的回答,让人忍不住为他们鼓掌。在学习的过程中让学生觉得数学的简单,不仅是一种技巧,更是一种智慧,是还原数学最朴素的状态。只有这样,才能极大地释放孩子的潜能。

  三、本节课的不足之处

  在上课过程中,对学生的情感关注太少。新课堂改革,不应该是对原有课堂的全盘否定,原有课堂教学中对学生的表扬和鼓励应该在新课堂教学中得到更好的'体现,因为学生的学习是认知和情感的结合,只有给了他们情感上的极大满足,学生才会获得渴望成功的动力,我们的自主学习活动才能收到应有的效果。

  四、通过本节课教学,使我意识到今后应注意如下几个方面

  1、教学观念还要不断更新,使数学教育面向全体学生,实现——人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。

  2、要不断学习新的教育理论,充实自己头脑,指导新课程教学实践。

  3、注意评价的多元化,全面了解学生的数学学习历程,对数学学习的评价不仅要关注学生学习的结果,更要关注他们学习的过程,帮助学生认识自我,建立信心。

八年级下册数学教学反思4

  勾股定理是中学数学几个重要定理之一,它揭示了直角三角形三边之间的数量关系,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础.它紧密联系了数学中两个最基本的量——数与形,能够把形的特征(三角形中一个角是直角)转化成数量关系(三边之间满足a2+b2=c2)堪称数形结合的典范,在理论上占有重要地位.

  八年级学生已具备一定的分析与归纳能力,初步掌握了探索图形性质的基本方法.但是学生对用割补方法和面积计算证明几何命题的意识和能力存在障碍,对于如何将图形与数有机的结合起来还很陌生.

  基于以上原因,本节课把学生的探索活动放在首位,一方面要求学生在教师引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的.领悟和认识.从而教给学生探求知识的方法,教会学生获取知识的本领.并确立了如下的教学目标:

  1、学生经历从数到形再由形到数的转化过程,经历探求三个正方形面积间的关系转化为三边数量关系的过程。并从过程中让学生体会数形结合思想,发展将未知转化为已知,由特殊推测一般的合情推理能力。

  2、让学生经历图形分割实验、计算面积的过程,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验,在过程中养成独立思考、合作交流的学习习惯;通过解决问题增强自信心,激发学习数学的兴趣。

  3、通过老师的介绍,体会一种新的证明的方法——面积证法。并在老师的介绍中感受勾股定理的丰富文化内涵,激发生的热爱祖国悠久文化的思想感情,培养他们的民族自豪感。

  教学难点将边不在格线上的图形转化为边在格线上的图形,以便于计算图形面积.

  本节课根据学生的认知结构采用“观察--猜想--归纳--验证--应用”的教学方法,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想.另外,我在探索的过程中补充了一个倒水实验,(放片子)我个人觉得效果很好,它让学生深刻的体会到了,不是所有三角形三边都有a2+b2=c2的关系,只有直角三角形三边才存在这种关系,并且实验很具有直观性,便于学生理解,而且是在学生的学习疲劳期出现,达到了再次点燃学生学习热情的目的,一举多得。

  除了探究出勾股定理的内容以外,本节课还适时地向学生展现勾股定理的历史,特别是通过介绍我国古代在勾股定理研究和运用方面的成就,激发学生爱国热情,培养学生的民族自豪感和探索创新的精神.练习反馈中既有勾股定理的基本应用,还有贴近学生生活的实例,既让学生感受到学习知识应用于生活的成就感,又使学生深刻了解勾股定理的广泛应用.让学生总结本堂课的收获,从内容,到数学思想方法,到获取知识的途径等方面.给学生自由的空间,鼓励学生多说.这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力.作业为了达到提高巩固的目的,期望学生能主动地探求对勾股定理更深入的认识、拓展学生的视野.

八年级下册数学教学反思5

  一.设计思路:

  设计思路建立在我校目标教学的前提下,由学生自主导学,然后再由教师考查和点拨,但是由于种种原因,我最终决定给学生一个半开半闭的区间。这节课的关键在前面的这步过渡,究竟是给学生一个完全自由的空间还是说让学生在老师的引导下去完成,我先后作了多次试验和论证,认为“完全开放”符合设计思路,但是学生在有限的时间内难以完成教学任务,故我们最终决定和学生一起共同完成。

  二.教学知识点:

  1.在本课的教学过程中,掌握范围分式方程的解法是关键,所以由两个习题过渡后,我复习了一元一次方程的解法,然后引导学生尝试利用解一元一次方程方法的基础上一起探索探索解分式方程的解法。我先作一示范,学生练习格式,接着出现有增根的练习题,依然让学生解决,由于学生不会检验根的情况,所以,些时再详究增根产生的原因,怎样检验增根等问题。

  2.在利用类比法解分式方程这一过程中,分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应渗透种化归思想的教学。

  3.本节课的难点是对分式方程可能产生增根的'原因,我为了让学生更深刻的理解就用了两个分式方程的解答过程进行对比,体现验根的重要性及必要性,

  充分体现学生为主体,教师为主导的教学体系。

  三.课堂效果:

  在这节公开课上,学生状态不错,所有的学生都能积极思考,踊跃回答问题,在课堂练习和最后的课堂小测里,学生的作答规范正确,而且对于增根产生的原因及相关知识点的难题的突破学生掌握的不错。

  整节课下来,基本能够达成教学目标,但是作为年轻教师,我在一些细节的处理上仍然需要改进。个别教学语言不够规范,而且利用新知识的学习过程,对旧知识的复习仍然不够,语速有点快,个别问题的引导可以更深层次,没有充分放手让学生突破难点,也是比较遗憾的地方,希望听课的老师给我多提意见,我会珍惜的。

八年级下册数学教学反思6

  本节课是平行四边形判定的第二节课,上一节课已经学习了判定方法1和判定方法2,再结合平行四边形的定义,同学们已经掌握了3种平行四边形的判定方法。本节课在上节课的基础上,学习平行四边形的`判定方法3,使同学们会运用这些方法进行几何的推理证明,并且通过本节课的学习,继续培养学生的分析问题、寻找最佳解题途径的能力。

  本节课的知识点不难,教材内容也较少,但学生灵活运用判定定理去解决相关问题并不容易,基于此,在本设计中加强了一题多解和寻找最佳解题方法的训练教学,丰富了课堂活动。

  由于本节已经完成了平行四边形的教学,因此本设计中注意了平行四边形判定方法的及时归纳,从边、角、对角线三个角度进行盘点,思路清晰,便于存贮、提取、应用。同时通过题目训练,让学生了解平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题。例如求角的度数线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再用平行四边形的性质去解决某些问题

八年级下册数学教学反思7

  小学已经对平行四边形的性质有一定的了解,对边、对角之间的关系是比较熟悉,无需再进行猜想边与角之间的关系,所以我确认本节的重点是引导学生如何将四边形问题转化为三角形问题,以及利用平行四边形的性质进行推理论证培养学生的合情推理能力、探究问题基本方法渗透。对基本的概念,比如平行四边形,对边,对角,对角线等概念,通过引例结合图形,仅仅是进行了简单的认识,最大限度的实现突出主干。

  例题1通过本例巩固平行四边形的性质,复习勾股定理和平行四边形的面积公式;规范学生运用性质进行说理的书写格式;教师讲解或引导过程中注意培养学生解题的目标意识。

  例题2复习平行四边形的定义,平行线的性质等,巩固证明边相等的另一重要方法:等角对等边;

  渗透解决问题的常规思路:

  思路1:平行四边形---平行四边形的性质---

  思路2:观察,猜想图中与,相等的角有哪

  些?(寻找中间等量,实现转化目标的)

  思路3:假设法,若(结合条件)

  与平行四边形ABCD中相一致,假设成立!

  环节(四)课堂知识与方法小结,帮助学生梳理知识,整理方法形成知识结构。

  环节(五)A组练习比较简单,题型比较常见,覆盖本节基本知识点,要求100%

  学生能独立完成。

  B组第1题,巩固例题1平行四边形的面积公式,及平行四边形的.性质,以及体验假设法探究思路妙处。第2题渗透整体思想,以及体验观察—猜想—验证探究问题的过程:直观感觉图中相等的边与角(为猜想提供依据)猜想,证明猜想。学生在体验中的感受,就会增强学生探究的兴趣,从而形成一种探究的思考方式,能有效的培养学生的创新精神和创新能力,让学生在探究中热爱数学、学好数学.

八年级下册数学教学反思8

  在新课程改革背景下的生物课堂教学中,教学生"学会学习"已成为现代教育的重要特征。预习就是一种行之有效的学习方法,是培养自学能力的有效途径。现代教学论认为,教学的基本任务之一,就在于培养学生的能力,而培养学生独立获取知识的自学能力又是其中的重要内容。然而。预习又是不少同学所忽视的。如何在教学中指导学生掌握预习方法,激发学习动机,提高自学能力而达到教学目的?下面就谈谈我的一些体会。

  预习的过程就是自学的过程,就是凭自己已有的综合能力独立地发现问题、分析问题、解决问题的过程,就是学生独立理解、识记知识的过程。预习是学习的极为重要的阶段,它的特点是先人一步,它的本质是独立学习。从这个意义上讲,预习就是学习的第一核心。因此,课堂教学应紧紧的抓住了这一点,并且高于这一点。我们在一般教学中的常用的预习就是让学生自己看看课本,或者这节课没事干了让学生预习预习下节课内容。

  学生的时间是有限的',而有这么多的学科需要预习,那么该怎样利用有限的时间进行充分的预习

  1学生要注意各个学科孰轻孰重,注意时间的分配

  2给学生一种预习的思路。可以给学生提示一些知识点。

  3让课代表抄一下这节课的学习目标

  4老师晚自习可以去辅导学生,让学生有一些预习的思路

  5保证充分的时间,时间是预习的保证

  这样,使教师在课堂上讲的时间少了,学生自己学习训练的时间多了,学生获得了主体地位,课堂教学过程大部分是学生自学过程,符合学生认知学习规律。真正实现课堂教学以“自主,合作,探究”为主要学习方式。

八年级下册数学教学反思9

  下面是我在教学中的几点体会:

  一、教学中的发现

  (1)分式的运算错的较多。分式加减法主要是当分子是多次式时,如果不把分子这个整体用括号括上,容易出现符号和结果的错误。所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。其次,分式概念运算应按照先乘方、再乘除,最后进行加减运算的顺序进行计算,有括号先做括号里面的。

  (2)分式方程也是错误重灾区。一是增根定义模糊,对此,我对增根的概念进行深入浅出的阐述:

  1、增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;

  2、增根能使最简公分母等于0;二是解分式方程的步骤不规范,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的模式中跳出来;

  (3)列分式方程错误百出。

  针对上述问题,我在课堂复习中从基础知识和题型入手,用类比的方法讲解,特别强调列分式方程解应用题与列整式方程一样,先分析题意,准确找出应用题中数量问题的.相等关系,恰当地设出未知数,列出方程;不同之处是,所列方程是分式方程,最后进行检验,既要检验是否为所列分式方程的解,又要检验是否符合题意。

  二、教学后的反思

  1、本节课一开始的创设问题情景,以学生的生活实际设计问题恰当的引入本节课的内容,可以激发学生的求知欲。

  2、在教学设计中,基本发挥了学生的主观能动性,以学生为主体,调动学生去主动探究做的还可以!通过小组讨论,师生中间的合作与交流,解决了本节课的重点与难点,让每个学生都能从同伴的交流中获益,同时也培养了学生的合作意识,提高了学生的动手、动口能力和归纳能力。

  3、书上的例题只有一题“用那种灯省钱”,缺少方案选择问题的恰当设元和规范书写的训练。为此教学时增加补充引例:活动1和活动2,分别以上网收费问题,购买毛笔和书法练习本的不同方案做铺垫,它们更贴近学生的生活实际,也更容易理解和掌握。能更好的体会本节课的教学重、难点。

  4、始终坚持“问题引领学生的思维”,发展学生的思维。设计不同梯度的问题,让水平不同的学生均可以感受学习数学的的实用性,符合《课标》学习有用的数学的要求。

  5、在学生的探究中出现故障时,能够有耐心一步一步的引导,并能做到回归教学的重、难点,让学生自主描述,找出根源最终学生可以独立自主的解决问题。

八年级下册数学教学反思10

  新课程改革要求我们:将数学教学置身于学生自主探究与合作交流的数学活动中,将知识的获取与能力的培养置身于学生形式各异的探索经历中,关注学生探索过程中的情感体验,并发展实践能力及创新意识,为学生的终身学习及可持续发展奠定坚实的基础。

  首先讲解勾股定理的重要性,让学生明白勾股定理是中学数学几个重要定理之一,它揭示了直角三角形三边之间的数量关系,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础。它紧密联系了数学中两个最基本的量——数与形,能够把形的特征(三角形中一个角是直角)转化成数量关系(三边之间满足a2+ b2= c2)堪称数形结合的典范,在理论上占有重要地位,从而激发学生的求知欲。

  一、精心编制数学教学目标知识与技能:1.让学生在经历探索定理的过程中,理解并掌握勾股定理的内容;2.掌握勾股定理的证明及介绍相关史料;3.学生能对勾股定理进行简单计算。

  过程与方法:在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,发展合情推理能力,并体会数形结合和特殊到一般的思想方法。

  情感态度与价值观:体会数学文化的价值,通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感,激发学生发奋学习。

  二、优化数学教学内容的呈现方式(一)创设问题情境,引导学生思考,激发学习兴趣。

  1.2002年国际数学家大会在北京举行的意义。

  2.电脑显示:ICM20xx会标。

  3. 会标设计与赵爽弦图。

  4. 赵爽弦图与《周髀算经》中的“商高问题”。

  (二)通过学生动手操作,观察分析,实践猜想,合作交流,人人参与活动,体验并感悟“图形”和“数量”之间的相互联系。

  1.观察网格上的图形:分别以直角三角形的三边向外作正方形,三个正方形的面积关系。再利用几何画板演示,引导学生去观察,大胆的猜测。

  2.引导学生将正方形的面积与三角形的边长联系起来,让学生进行分析、归纳,鼓励学生用用语言表达自己的发现。采取“个人思考——小组活动——全班交流”的形式。

  3.让学生自己任画一个直角三角形,再次验证自己的发现,在此基础上得到直角三角形三边的关系。

  4.电脑演示:锐角三角形、钝角三角形三边的平方关系,从而进一步认识直角三角形三边的关系。

  5.通过几个练习,了解直角三角形三边关系的作用。

  (三)继续动手操作实践,思考探究,拼图验证猜想。

  1.学生动手用准备好的四个直角三角形拼弦图。

  2.利用弦图来验证勾股定理。采取“个人思考——小组活动——全班交流”的形式。

  (四)拓展延伸,发挥作为千古第一定理的文化价值。

  1.简单介绍勾股定理的文化价值。

  2.阅读:勾股定理成为地球人与“外星人”联系的“使者”。

  3.电脑演示:欣赏勾股树。

  4.推荐进一步课外学习的网址。

  5.与课头的“ICM20xx”在中国举行的意义首尾呼应,进一步激发学生追求远大目标,奋发学习。

  本节课开始我利用了导语中的在北京召开的`20xx年国际数学家大会的会标,其图案为“弦图”,激发学生的兴趣。同时出示勾股定理的图形,让学生猜想直角三角形三边之间的关系。然后利用正方形网格验证猜想的正确性,还利用教具在黑板上拼图,启发学生用面积法得出a2+ b2= c2在讲解勾股定理的结论时,为了让学生更好地理解和掌握勾股定理的探索过程,先让学生自己进行探索,然后同学进行讨论,最后上台演示。这样可以加深学生的参与,也让师生间、生生间有了互动。然后老师利用多种证法让学生参与勾股定理的探索过程,让学生自己感觉并最后体会到勾股定理的结论,使得这课的重难点轻易地突破,大大提高教学效率,培养了学生的解决问题的能力和创新能力。

八年级下册数学教学反思11

  一、教学设计思路:

  本节课是《4.2平行四边形的判定2》,前面已经有三个判定定理的学习,本节课只是在原有基础上补充多一个判定定理。从孩子作业反映上来看,孩子们对判定定理的选择与应用做得并非太好,特别是对判定定理的选择上,经常是使用自己较熟悉的一种,结果有时使到整个证明过程呈得繁琐。

  因此,本节课的教学环节我做了这样的设计:

  第一环节:课前阅读:一方面是复习旧知,另一方面是使学生尽快进入课堂教学;

  第二环节,课前小测:五道基础性题目检测学生之前的与上节课所学的知识;

  第三环节,定理的选择:一道判断有几个平行四边形的题目,判断过程中让学生选择适当的定理来证明;

  第四环节,探索两条对边分别相等的四边形是平行四边形的判定定理;

  第五环节,课本上的随堂练习巩固知识点;

  第六环节,辨别两个判定定理的易混点:一个是一组对边平行,另一组对边相等,另一个是两条边相等,另外两条边也相等;

  第七环节,练习:三道练习题。其中有时间时最后一题进行适当的变式。

  二、教学完成情况:

  教学任务基本完成,就是最后一环节当中变式题目没有讲,不过那个本来就是多预备的。

  三、满意与不足之处:

  本节课中虽然说教学任务基本完成。但有些环节中的.处理做得不是很好。课前阅读与课前小测方面是比较满意的,能做得多关注差生,尽可能地减少差生面,提高孩子的学习信心。但是,第三环节中定理的选择的练习中,出发点是好,但花费的时间较多,导致新课讲授的时间较少。第四环节探索判定定理时,实验题安排了学生在练习本上写,老师巡视,最后评讲,其实最好是让学生板演;第六环节是找学生板演时应有所挑选,课堂中选了一个基础好与一个基础差的学生,差些的学生主要看着基础好的学生来完成,没太大意义;最后的练习讲评中时间比较不充裕,所以导致讲得比较简单,更多的是引导与提示,没有充分留有时间给孩子思考。另外,方法性的指导也略显不足。

  四、改进措施:

  作为一个刚毕业一年的老师,经验性的不足也有一定关系。为了更快地完善自己的教学,近期主要注意以下几个方面:

  1、抓好课前的准备。从严做起,重在落实。对学生课前练习本、课本等课堂需要用到的东西都要让学生养成习惯做好准备。

  2、对教学设计与时间地分配要做更好的思考,以增强对时间控制地敏感度,更好地分配好每一环节所花的时间。

  3、让课堂慢下来,争取让更多的学生消化好课堂新知,理解好知识点与例题。

  4、在课堂上放心地让学生去尝试错误,多些让学生自主思考。

  5、对学生的学习与做题多些方法性的指导。

八年级下册数学教学反思12

  让学生在熟练掌握书上所提供的性质、判定的基础上,要求学生运用已学知识,从结构图的任何一个地方,根据箭头的指向,尽可能自行编写可以识别某个图形的命题,板书出来,全班参与判断。提供的命题可能是直接识别,也可能是间接识别(如对角线互相平分且相等的四边形是矩形,就是先识别平行四边形,在此基础上加上对角线相等可进一步识别矩形),学生自主性和积极性都有所提高,充分体现了新课标以学生为主,以学定教的理念。这堂课中的全班交流教学环节,不仅使学生畅所欲言、共同发展,而且真正体现了学生是学习的主人,是学习的主体这一现代教育的`主题。

  其次,在梳理知识点的时候,我反复强调一般与特殊的关系,如矩形是特殊的平行四边形,那么它也具备平行四边形的所有性质,除此之外,它也还应该有自己独特的性质。充分利用知识的螺旋式上升和正迁移,降低学习难度。

  另外,我还注重了数学思想方法,让学生受到数学思想的熏陶与启迪。这节课在教学过程中渗透了“变与不变”、转化等数学思想。

八年级下册数学教学反思13

  平行四边形在实际生活和工作中具有广泛的应用,因此它的性质和判定是本章的重点内容。性质和判定的学习是一个互逆的过程,性质是判定学习的基础。《平行四边形的判定》一节按照课本分为两个课时,前两个判定为第一课时,第三个判定作为第二课时,本节是《平行四边形的判定》的第一课时,主要探讨平行四边形的判定的两种方法,有了性质作为基础,因此对于判定的方法学生理解起来比较容易。在课堂上我本来打算要求学生将每种判定的数学语言和符号语言都按照格式书写出来,这样有利于他们数学习惯的培养,但是最后由于时间没有把握好而最终没能落实下来,成为课堂的一点遗憾。

  在这节课的教学过程中,学生的思维始终保持着高度的`活跃性,出现了很多的闪光点,对我的启发也很大,真可谓教学相长。所以在教学过程中教师应积极转变传统的“传道、授业、解惑”的角色,在教学中应把握教材的精神,在设计、安排和组织教学过程的每一个环节都应当有意识地体现探索的内容和方法,避免教学内容的过分抽象和形式化,使学生通过直观感受去理解和把握,体验数学学习的乐趣,积累数学活动经验,体会数学推理的意义,让学生在做中学,逐步形成创新意识。

  由于自身数学知识系统与教学经验的缺乏,在本节中也出现了较多的问题:

  1.学生的想法有时老师是无法预测的,尽管看似一个较简单的问题,由于学生自身个体因素的差异,给出的解决方案可能是错的,也有可能不是最方便的,但是我们要放手让学生去思考,这样才能培养他们的探究能力,也有利于知识的掌握。但是实际落实过程中也遇到了问题,由于学生探究会需要较多的时间,这样对于后面内容的教学提出了较大的困难,很多较好的教学环节由于时间不够而不得不临时删除,使得整个教学设计大大降级,失去原本的完整性,这也体现出自身的教学机智不够成熟,处理课堂实际能力比较薄弱。以后还要好好向优秀教师学习。

  2.学生在练习过程中出现的问题,不应该操之过急地指出学生所犯的错误,而应该将这个改过的机会留给学生自己,让他们自己发现问题,解决问题。

  3.对于猜想得到的定理的过渡太快,不符合数学逻辑。猜想是猜想,定理是经过科学长期证明过的正确命题,两者之间的跨度是非常大的。

  4.对于课堂设计,真正让学生自己动手去做,去思考,去讨论,去获得结论的时间与空间都不够。从而整堂课让学生的思想受到了束缚而没能让学生的思维得到进一步的拓展,是一大败笔。

  5.数学逻辑性,数学术语的使用还不够严密,有待于日后进一步提高。

八年级下册数学教学反思14

  《分式的基本性质》是分式一章的重点,这一章教学效果的好坏,将直接影响到整个分式的学习,课本是通过算术中分数的基本性质,用类比的方法给出分式的基本性质,学生接受起来并不感到困难,但是要使学生达到透彻地理解,却并不是一件容易的'事。因此我在教学时采用师生共同体会关键字眼在分式概念表述中的重要性和指导练习习题的不可忽视性。

  当使用分数的基本性质时,虽然也强调用以同乘(或除)m≠0的数,但在实际应用时,几乎没有用零去乘(或除)的可能,所以使用性质的这个根本性的限制条件常常被忽略了。而在代数中,m常是一个含有字母的代数式,就有m=0的可能性。所以每当我们应用这个性质时,都应首先考虑一下这个用以同乘(或除)的整式的值是否为零?随时注意在怎样的条件下应用这个性质的。我们在教学中应使学生养成使用分式基本性质的严谨的习惯。

  通过教学,学生对分式的基本性质有了一个较好的理解,这就为下面讲分式的变形奠定了良好的基础。整堂课取得了良好的教学效果。不足之处在于对于分数的基本性质与分式的基本性质能进行类比的本质理解不够,作业中仍有部分学生没有考虑分子、分母同乘以或除以的字母是否为0。

八年级下册数学教学反思15

  在二次根式这一章的学习中,重点是熟练掌握二次根式的运算,教学的关键是理解二次根式的性质,在本章教学中,存在以下问题:

  1、课前没很好确定学生的基础知识情况

  高估学生对学过知识的掌握,认为平方根这一章的知识掌握不错,所以在二次根式结果是非负数以及二次根式的被开方数也是非负数。我把这两个结论草草给出,这样导致基础差的学生根本不知道这两个结论的来源。

  2、课堂没完全还给学生

  预习时间不充分,大部分学生是回顾了本章的知识点,但还没来得及思考,易错点没有来得及整理展示讨论,老师就开始讲课,总怕展示时间过多以至于本节任务完不成。课堂活动时间也不充分,并且学生在思考问题时给予提示过多,以至于学生顺着老师的思路走,没有了自己的思考体系。因为时间不足,所以老师只好代替学生走了一下过场,订正答案,还有一部分学生还没有做完。这样就不能真正检验学生掌握情况,不能及时反馈,及时采取措施进行补救。

  3、课后练习不能真正落实

  学生不能很熟练地化简二次根式,以致于二次根式的加减乘除不能顺利进行。例如不会熟练化成最简二次根式,导致学生对二次根式的加减感到很困难。在这里,应要求学生对100以内的二次根式化简熟练掌握,为二次根式的加减打下扎实的基础。对二次根式的加减,大部分学生理解同类二次根式,并能够合并同类二次根式,出现的问题在于二次根式的化简,学困生在于整式的`加减,整式的乘除,分式的加减和乘除的运算的公式和运算法则不清,即使把本节知识听懂了,由于过去的知识不牢固,造成运算结果不正确。把过去学过的知识复习,使学生能够独立完成二次根式的运算。

【八年级下册数学教学反思】相关文章:

八年级下册数学教学反思04-18

八年级数学下册教学反思03-24

八年级数学下册教学反思11篇04-16

八年级下册的教学反思05-12

八年级下册教学反思04-08

八年级数学下册教学反思(通用20篇)06-27

北师大版数学下册教学反思04-04

八年级下册生物教学反思05-05

八年级下册教学反思(通用)01-07