圆柱体积的教学反思

时间:2024-06-08 16:46:39 教学反思 我要投稿

圆柱体积的教学反思

  作为一位优秀的老师,我们的工作之一就是课堂教学,通过教学反思可以很好地改正讲课缺点,怎样写教学反思才更能起到其作用呢?以下是小编收集整理的圆柱体积的教学反思,欢迎大家分享。

圆柱体积的教学反思

圆柱体积的教学反思1

  案例背景:

  《数学课程标准》指出:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括形成方法和理论并进行广泛应用的过程。这一描述,明确了小学数学的内涵,即数学学习是一个过程。近日,在市小学数学名师课堂教学展示中,天福小学的刘爱芳校长执教的《圆柱的体积》一课,使我对个人的专业素养和课堂的设计内涵,都有了很深的触动。

  案例描述:

  片段一:

  师:同学们,往这里看,今天老师带来了三件物体:玻璃杯、橡皮泥、金属零件。这三件物体有什么共同点?

  生:都是圆柱。

  师:圆柱形的物体生活中很多,以这三样为例,你能提出哪些数学问题?

  生1:水杯的容积是多少?

  生2:水杯的表面积是多少?

  生3:水杯的体积是多少?

  师:这三个问题很好,我们记下一个。

  师板书,水杯容积

  生继续提出关于橡皮泥和金属容器的体积的问题,师板书:橡皮泥体积,金属零件体积。

  师:关于表面积的问题前面我们已经研究过,这节课我们来研究圆柱体积的问题。

  师板书:圆柱体积

  师:以你现在的知识储备,你能解决哪个问题?

  生:水杯的容积

  师:怎样求?

  生:可以把水杯的装满水,倒进一个长方体的容器中,计算出长方体容器中水的体积,也就求出了水杯的容积。

  师:瞧,“装满水”,“满”这个字用的多好,把水杯中的水倒进长方体容器中,从而求出水的体积。在这个过程中,运用了一种重要的数学思想方法----转化。

  师板书:倒---长方体,转化。

  师:在转化过程中,水的什么变了?什么没变?

  生:水的形状变了,体积没变。

  师:水杯的容积解决了,橡皮泥的体积呢?金属零件的体积呢?

  师:根据学生回答分别板书:捏---正方体,浸----长方体。

  师:刚才我们根据这三个物体的共同特点,通过转化,把它们转化成我们以前学过的长方体或正方体的体积。是不是通过这三个方法,就可以解决所有的圆柱的体积的问题?

  生:不能。

  师:为什么?

  生交流,得知物体很大时,没法进行转化。

  师:因此,我们需要寻找一种通用的方法,你想到了什么方法?

  生:计算。

  师:圆柱体体积与什么有关?猜想一下怎样计算?

  ……

  片段二:

  师:回顾这节课的学习过程,你认为你最有收获的是什么?

  师:前面大家根据长方体和正方体的体积公式猜测出圆柱的体积公式也是底面积×高,通过验证得知大家的猜测是正确的。

  师:这三个立体图形有什么共同点?

  师:像这样的形体在数学上叫做直柱体。

  课件出示:长方体、正方体、圆柱及它们的体积公式都是底面积×高。

  师:生活中的直柱体还有哪些?

  师:它们的形体是否也是底面积×高?有兴趣的同学可以课后研究。

  案例反思:

  片段一的教学中,教师出示了三样精心准备的物体----玻璃杯、橡皮泥、金属零件(都是圆柱体),在学生围绕这三种物体提出数学问题后,教师并没有直接引导学生去探求如何计算圆柱体的体积,而是通过“以你现在的知识储备,你能解决哪个问题?”“在转化过程中,水的什么变了?什么没变?”“瞧,‘装满水’,‘满’这个字用的多好,把水杯中的`水倒进长方体容器中,从而求出水的体积。在这个过程中,运用了一种重要的数学思想方法----转化。”“水杯的容积解决了,橡皮泥的体积呢?金属零件的体积呢?”这些引导性语言,使学生明白有些物体的体积可以分别通过倒、捏、浸转化成长方体或正方体的体积来解决,“转化”的提出为学生后面构建数学模型,探究圆柱体积公式奠定了基础。紧接着“是不是通过这三个方法,就可以解决所有的圆柱的体积的问题?”这个问题,点燃了学生的探究欲望,这是这节课成功的起点,通过极限思想的渗透,使学生体会到了探究圆柱体积的计算方法的必要性。

  片段二的教学中,教师在引导学生进行学习反思的基础上,进行了拓展延伸。通过对长方体、正方体、圆柱体积公式的归纳汇总,引出直柱体的概念,学生进行了对直柱体表象的交流。此时,学生的探究欲望、学习激情,并没有随着课的尾声而有所减弱,而是探究热情再一次被点燃,孩子们带着强烈的研究热情结束了本节课的学习。

  教材是一种重要的课程资源,对于学校和教师来说,课程实施更多地应该是如何更好地“用教材”,而不是简单地“教教材”。我们在用教材时不能把它作为一种“枷锁”,而应作为“跳板”——编者意图与学生实际的“跳板”。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,研究学生学习起点,让学生亲历完整的数学学习过程,触摸数学鲜活生动的生命脉息,体会到知识产生过程中的前因和后果,从而进行有效的数学思考。

圆柱体积的教学反思2

  圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓住新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。

  在圆的体积公式推导过程中,给予学生足够的时间和空间,激发学生的探究的欲望,培养学生的空间想象力。我把圆柱体拼成一个长方体,就是把一个新图形转换成一个我们学习过的图形,通过讨论,争鸣从而得出比较深层的数学知识,这种思维的火花,我们老师应及时捕捉,让它开得绚丽多彩,从而让学生的个性能得到充分的培养。让学生在学习的过程中体会到数学给自己带来了巨大的成功感和喜悦感,我们老师这样才能寓教于乐,从而达到了事半功倍了。

  本节可的教学内容是九年义务教育六年制小学教学第十二册﹙人教版﹚《圆柱的体积》,以前教学此内容时,直接告诉学生:圆柱的体积=底面积×高,用字母表示公式:V=S和,让学生套公式练习;我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

  一、学生学到了有价值的知识。

  学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。

  二、培养了学生的科学精神和方法。

  新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。

  三、促进了学生的.思维发展。

  传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

  本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。

圆柱体积的教学反思3

  一、摆脱情境困扰,追求简单高效

  圆柱的体积教学是小学几何知识的重头戏,教学这节课时,我首先搜集了网上的大量课例,想寻找一些灵感来装饰这节课的开头——创设怎样的情境才能新颖又能够为整节课的教学服务呢?想了好几套方案最后还是采用创设情景,由圆柱体水杯装水,引出圆柱体,再由圆柱体水的体积引出圆柱体体积的求法。板书“圆柱的体积”课本是先让学生回忆“长方体,正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。我认为,首先应复习一下圆面积计算公式的推导过程,这样有助于学生猜想,接着在回忆了长方体,正方体体积计算方法之后,再接着探究。这样由平面图形到立体图形,过度自然、流畅,便于学生的思维走向正确方向,这时教师的引导才是行之有效的。

  二、建立切拼表象,渗透极限思想

  学生进行数学探究时,为了让学生充分体会,我把操作的机会给了学生。让学生分组试验探究,接着再结合多媒体演示让学生感受,把圆柱的底面分的份数越多,切开后拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的.哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。我使用了—————把圆柱体沿着它的直径切成诺干等份,拼成一个近似的长方体,展示切拼过程。让学生一目了然。

  三、练习层层递进,弱化繁琐计算

  为了让学生能熟练地掌握计算圆柱的体积,在设计练习时要多动脑花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出四种类型:

  1、已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:V=sh。

  2、已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:V=πr2 h。

  3、已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:V=π(d/2)2 h。

  4、已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)2 h。

  在巩固练习中,只要从这四种类型去考虑,做到面面俱到,逐层深入,由易到难,学生才能真正掌握好计算圆柱体积的方法。课堂上的时间有限,课本的标注也有:今后涉及圆柱圆锥的计算可以使用计算器。所以这节课教学时基本没有让学生参与繁琐的计算,学生学的也很轻松。

圆柱体积的教学反思4

  这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓住新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“ 从生活中来到生活中去” 的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。

  一、让学生在现实情境中体验和理解数学

  在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?圆柱形橡皮泥的体积你会求吗?)学生听到教师提的问题多在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,或是求压路机滚筒的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体积的欲望。

  二、鼓励学生独立思考,引导学生自主探索、合作交流

  在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。通过实验、操作、自主探究,实现学生主体地位、学习方式的转变,有效地培养学生的.创新意识。的思想。

  三、练习时,要形式多样,层层递进

  例题“ 练一练” 中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,教师在设计练习时要多动脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出五种类型:

  1 .已知圆柱底面积(s )和高(h ),计算圆柱体积可以应用这一公式:V=sh

  2 .已知圆柱底面半径(r )和高(h ),计算圆柱体积可以应用这一公式:V=πr?h 。

  3 .已知圆柱底面直径(d )和高(h ),计算圆柱体积可以应用这一公式:V=π(d/2)?h 。

  4 .已知圆柱底面周长(c )和高(h ),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)?h 。

  5 .已知圆柱侧面积(s 侧)和高(h ),计算圆柱体积可以应用这一公式:V=π(s 侧÷h÷π÷2)?h 。

  在巩固练习中,只要从这五种类型去考虑,做到面面俱到,逐层深入,由易到难,学生才能真正掌握好计算圆柱体积的方法。

圆柱体积的教学反思5

  “圆柱的体积”一课是在学生已经学习了“正方体的体积”和“长方体的体积”“圆柱的认识”“圆柱的表面积”等相关知识的基础上进行教学的。同时又是为学生今后进一步学习其他立体图形的有关知识做好充分准备的一堂课。结合本课的教学实际情况,反思如下:

  一、创设问题情境。

  上课开始提出“我们认识了哪些立体图形?它们的体积怎样求?现在我想知道这块橡皮泥的体积或这个瓶子的容积,该怎么办?”学生提出“把橡皮泥捏成长方体的`形状,把瓶子里装满水,再倒入一个长方体的盒子里,就可以求出来瓶子的容积了”。这样不断地引导学生运用已有的生活经验和旧知,探索和解决实际问题,并制造认知冲突,形成了“任务驱动”的探究氛围。

  二、知识过程,让学生在参与中学习。

  首先让学生大胆猜想,圆柱体的体积可能等于什么?大部分学生猜测圆柱体的体积可能等于底面积×高。然后小组同学想办法加以验证。有的组将圆柱体橡皮泥捏成长方体,计算出了橡皮泥的体积。有的组通过圆的面积公式推导,将圆柱体分成若干等分后再拼成长方体。通过计算长方体的体积推导出圆柱体的体积。然后让学生比较圆柱体的底面积、高与长方体的底面积、高之间的关系,使学生确信自己的猜想是正确的。

  三、在讨论交流中学。

  通过实验验证之后,让学生看书自学,按照书中介绍的方法自己推导出圆柱体的体积公式。小组进行如下讨论:

  (1)拼成的近似长方体体积与原来的圆柱体积有什么关系?

  (2)拼成的近似长方体的底面积与原来的圆柱底面积有什么关系?

  (3)拼成的近似长方体的高与原来的圆柱高有什么关系?这样不仅为学生提供动手操作、观察以及交流讨论的平台,而且还发挥了学生的主动性。

  在这一环节中我处理的有点仓促,没有给所有学生充分的思考和探究的时间。如能抓住这一契机让全体学生都去操作、思考、探究可能会更有利于学生理解和掌握公式。在今后的教学中我要特别关注学生的学习过程,要根据教学要求,优化课堂教学的需要对教材进行适当的加工处理。

圆柱体积的教学反思6

  本节课主要是引导学生探索并掌握圆柱的体积公式,主要重视了以下几方面:

  1、重视先猜想、再验证的思路来引入教学。

  新课伊始,课件出示三个几何体的底面和高,引导学生来观察这三个几何体,发现它们的底面积都相等,高也都相等。进一步引导思考:想一想,长方体和正方体的体积相等吗?为什么?猜一猜,圆柱的体积与长方体和正方体的体积相等吗?学生认同,并提出等于底面积乘高。教师再次抛出问题:这仅仅是猜想,那用什么办法验证呢?今天这节课就来研究这个问题。

  2、重视利用知识、方法的迁移来展开教学。

  本课的例题探索,有一个目标就是使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。因此,笔者在执教时,根据陈星月的回答顺势复习了圆面积的推导:把一个圆平均分成16份、32份、64份或更多,剪开后可以拼成近似的长方形,圆的面积就可以转化成长方形的面积进行计算。接着提问:那么,受这个启发,那我们能不能将圆柱转化成长方体来计算体积呢?首先实物演示圆柱切拼的过程。把圆柱的底面平均分成16份,切开后可以拼成一个近似的长方体。然后进行课件演示,发现:把圆柱的底面平均分的份数越多,拼成的几何体会越来越接近长方体。这样有利于激活学生已有的知识和经验,使学生充分体会圆柱体积公式推导过程的合理性,并不断丰富对图形转化方法的感受。

  3、重视通过核心问题的讨论和板书的精当设计来突出重点、突破难点。

  核心问题即指中心问题,是诸多问题中相对最具思维价值、最利于学生思考及最能揭示事物本质的问题。它是在教学过程中,为学生更好地理解和掌握新知、更好地积累学习经验和方法,针对具体教学内容,提炼而成的教学中心问题。就如圆柱体积的计算而言,在这节课的教学过程中,教师抓住“圆柱的.体积可能跟圆柱的哪些条件有关呢?”“拼成的长方体与原来的圆柱有什么关系?”“要计算圆柱的体积一般要知道哪些条件?”这三个问题,使学生在获取圆柱体积公式的同时又了解了体积公式的由来,并及时总结了思考问题的方法。核心问题也可以指为了探究知识的来龙去脉而在关键环节提出的指向性问题。

  当然,需要注意和改进的地方是:书写格式的规范。

圆柱体积的教学反思7

  在教研组评课的时候,程老师说过这样几句话,我总结如下:

  1、 这节课讲的是什么?

  2、 学习这些知识为了什么?

  3、 这节课讲给谁?学习这些知识的学生处在什么水平?

  从这几个点反思了自己的本节课:

  一、 这节课讲得是什么?

  “是什么”的问题我的理解是理清楚本节课的教学内容,教学目标和重难点,教师要做到心中有数。

  在备课时教师首先要关注教材,尊重教材,尽自己最大的力量认识理解教材的编写意图,理解教材所传递出来的信息。同时教师在阅读教材时要清楚教学内容在数学知识体系中的作用,对前面学习内容的延续,对后面学习内容有什么作用。

  前面已经学习了“长方体、正方体”立体图形体积的计算,圆柱体积的学习是学生已有知识的延续,同时为后面圆锥体积的学习做好了铺垫和准备。在整个立体图形的学习中起着承前启后的作用。

  本节课重点是让学生理解并掌握圆柱体积公式,并能够熟练应用计算,难点是让学生经历圆柱体积公式的推导过程。

  二、 将这节课是为了什么?

  数学来源于生活,有应用于生活,生活中处处有数学,学习数学知识的目的就是为了应用。那么本节课所学的知识就是为了计算一些圆柱体积的大小,这是这节课的目的所在。

  三、 这节课讲给谁?学生的水平。

  这一点就是提醒我们在备课时,充分的备学生,在充分理解教材的基础上。再重新放空自己,把自己摆在学生的位置,重新学习这部分知识。以学生的姿态来备课,读懂学生是上好课的有力保证。

  “圆柱体积公式的推导”是在学生学习了圆柱的特征、表面积计算以及“长方体的体积”“正方体体积”等相关立体图形的基础上教学的,学生拥有继续学习的旧知识和经验,即:

  1 知识铺垫:学生知道“体积”的含义及计算体积的方法;

  2 经验铺垫:在研究圆的面积时,采用“割补转化”的方法,渗透了一种探究学习的思想方法;

  四、反思本课的落实情况

  导入部分,先复习了“圆柱”的特征, 然后通过解读课题,复习了“体积”的概念,自然的引出“我们学习过哪些图形的体积公式”复习了长方体正方体的体积如何计算,并重点分析了立体图形的统一公式,说明二者的体积与“底面积”和“高”相关。从而创设问题情境,引导学生运用已有的生活经验和旧知,制造认知冲突,形成了“任务驱动”的.探索氛围。

  探究部分,为学生提供了观察思考及交流讨论的平台,由于教具的限制,没有让学生充分的进行动手操作。这比较遗憾。通过多媒体演示让学生在观察中逐步经历计算公式的推导结果,并发展学生的空间观念。

  练习环节安排注重练习生活实际,让学生应用自己推导出的计算公式解决引入环节中的两个问题,第一个问题数据提供,直接利用公式进行计算,同时在巩固两个计算。之后再让学生解决老师手中的圆柱体积,这时需要让学生测量相关数据。让学生认识数学的价值,切实体验到数学其实就在我们身边。并且学生在解决问题的同时推导出了已知半径和直径计算圆柱体积的公式。

  本节课最大的不足就是:学生在练习中教师关注度不够全面。

圆柱体积的教学反思8

  本课主要内容是圆柱的体积公式的推导及其应用。因为公式的推导过程是个难点,因此在教学设计时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,帮助学生理解公式的来源,从而获得知识。下面我从教学过程、教学策略、教学技能等方面谈谈自己的一些反思。

  一、在教学过程的设计方面

  1、导入时,力求突破教材,有所创新

  圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。于是我设计时不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、

  流畅,便于学生的思维走向正确的方向,这时教师的`引导才是行之有效的。不过应该注意时间的控制,不能花费太多的时间。

  2、新课时,要实现人人参与,主动学习

  学生进行数学探究时,应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。在推导圆柱体积公式过程时,我让学生经历先想—观察—动手操作的过程。把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着让学生小组交流长方体的长和宽与圆柱的各部分有什么关系?圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。这样学生亲身参与操作,有了空间感觉的体验,,也有了充分的思考空间。这样设计我觉得能突破难点,课堂效果很好。

  3、练习时,形式多样,层层递进

  例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,我在设计练习时动了一番脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出五种类型。

  a.已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:V=sh。

  b.已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:V=πr2h。

  c.已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:V=π(d/2)2h。

  d.已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)2h。

  e.已知圆柱侧面积(s侧)和高(h),计算圆柱体积可以应用这一公式:V=π(s侧÷h÷π÷2)2h。

  因为是第一课时所以在巩固练习中,只要从前四种类型去考虑,做到面面俱到,逐层深入,由易到难,使学生真正掌握好计算圆柱体积的方法另外,还设计了解决生活中的问题,让学生能学以致用解决生活中的问题。

  二、在教学策略方面

  我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。而在巩固练习这一环节,我用多媒体发挥它大容量、节省时间的优点。

  三、在教学技能方面

  学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是学生在自己艰苦的学习过程中发现并从学生的口里说出来的,这样的知识具有个人意义,理解更深刻。但是我觉得这个引导的过程需要教师有认真准备,随时能解决课堂上可能出现的一些问题。传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而我在本课创设了丰富的教学情景。

  四、存在的问题

  不足之处是:由于这节课的设计是以学生为主、发挥学生的主体作用,要充分展示学生的思维过程,所以在学生动手实践、交流讨论和思考的时间上教师应合理把握,不能时间较多,否则会导致练习的时间较少。

  另外,在练习设计上,题形虽然全,但觉得题量偏多,因为这部分练习涉及的计算多、难,这样练习题还需精心设计。

圆柱体积的教学反思9

  一、让操作更详实,留下思考的痕迹

  《数学课程标准》指出:动手实践、自主探索、合作交流是学生学习数学的重要方式。组织学生在实践操作中探究发现规律,可以充分调动学生的各种感官,从感性到理性,从实践到认识,从具体到抽象,引导学生积极动手动脑、概括分析、抽象推理等,这不仅有利于学生思维的发展,而且也可以加深学生对数学知识的理解和掌握。尤其是对于几何知识的学习,课堂教学中的动手操作就显得更加重要。

  在探索圆柱体积计算方法的时候,教师试图让学生结合圆面积计算的探索方法,能联想到可以把,圆柱的体积转化成已知的立体图形的体积。但这种方法似乎在学生的印象中并不深刻,因此学生在探索的一开始,学生就遇到了思考的困惑,对他后面的探索造成了很大的影响。在教师的印象中圆面积的计算公式推导应该是我们花了很多时间去让学生操作的,但是操作的效果却如此之差。我们不妨反问自己一下,究竟自己在教学的时候是否用好了学生的操作,让学生对操作的过程有深刻的体会与认识,在操作中是否激起了学生的思考。

  当学生想到了探索方法后,却因为一些客观的原因,没有能够让学生亲自去套作一番,光是看课件、看其他同学的操作,对于大部分学生来说,印象是不够深刻的,体会也是不到位的。毕竟这部分内容的学习对与学生来说也是有一定困难的,虽然是六年级的同学,但他们的空间想象能力还是不够的,需要实打实的操作,让他们有个直观的认识。

  所以我认为我们的课堂上应放手让学生去操作,用直观的操作,留下自己思考的痕迹,为进一步探索知识做好准备。

  二、让观察更细致,寻找知识的联系

  数学观察力,是新课标中对提出学生应必备的一种重要数学能力。学生在操作的基础上要学会观察,挖掘知识之间的联系,真正体现操作的价值。

  在圆柱的体积的教学中,教师让学生去发现圆柱体与通过切割后形成的长方体之间的联系时,不少学生都一时摸不着头脑。这时,教师不妨给孩子一些观察的'提示,如:“拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?”“拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?”通过学生直观的观察,让学生去挖掘数学本质上的一些联系,让学生在知识的探索过程中有一个完成的体验过程,也对所学的知识有一个更好的理解。

  观察是智慧的源泉,让学生学会从变化的角度去观察,发现知识之间的联系,这也是一种令学生终身受益的学习方法。

  三、让探索更深入,渴求方法的掌握

  通过操作与观察,可以说学生积累了一定的认知经验,这种经验我想不应该只停留在一节课、一个内容的学习中,可以延伸到很多知识的学习中去,从而形成一定的学习方法。就如在圆柱的体积的学习中,圆柱体转化成已经学过的长方体的体积来探究的这种方法在之前学生已经接触过,如:圆面积的计算方法、平行四边形的面积计算方法,我们都是通过将未知的图形转化成已知图形来探索面积计算的方法。如果我们在教学的过程中能够很好地重视学生的操作经验积累,并形成一定的方法,相信学生在沟通新知和旧知之间的联系时会更加的自然而然,也能顺利的实现知识的正迁移。

  因此,在数学学习的过程中,应该让学生的探索过程更加的深入,形成一定的学习方法,为今后的学习积累知识经验的同时

圆柱体积的教学反思10

  [头疼问题]

  近期六年级的任课教师都会头疼我们也不例外

  年级组集体备课时会叹气

  在走廊里碰头时会感慨

  叹气、感慨地主要原因就是:近期作业的错误率很高(特别是学困生)

  这使我不免停下“匆匆的步伐”凝望着这些作业叉叉多的孩子

  什么地方出问题了?

  [细细掂量]

  一轮本子改下来错误有以下几类

  1、优等生:列出一个长长的算式,直接得出错误的结果(看不出是哪一步出错,反正计算错)

  2、中等生:求表面积时,大概知道侧面积+两个底面积;但真正列式的时候底面积没乘2;而到了只需要加一个底面积的时候(无盖水桶等实际问题的时候)却乘2;

  3、学困生:列出的算式都有问题。一查,圆面积计算公式都不会(够厉害),最基本的都不会,圆柱的表面积和体积又如何能正确求出;个别的20多分钟头都不抬,就在计算一个图形题,仔细一看列式出错,后面的脱式计算过程中的结果有的有6、7位小数;依然不知疲倦的算啊算,看着都累

  4、不知灵活变通,一般来讲3.14最好是最后再乘,这样可以降低计算的`复杂程度,减轻计算的强度;但部分学困生勇气可嘉,不管那一套,列式中3.14在前面就先算;放在后头就最后算,老实得可爱;当你在讲计算技巧的时候可爱的孩子们还在埋头苦算,结果错误百出。

  [标本兼治]

  1、学优生:提出要求:不能一步得出结果,要脱式:关注做作业、打草稿的态度、习惯,养成草稿本清晰、数字清楚,可以避免匆忙之中抄错数字导致整题出错。

  2、中等生、学困生:

  (1)重视公式的熟练程度:通过演示、推导、同桌互说、单独抽问、上黑板默写等方法帮助夯实基础。

  (2)重点分析典型习题,帮助学生找到审题、列式、解题的方法和策略,并针对性练习,提高技能

  (3)重点强记:3.14*1=…………………3.14*9= 常用计算结果,达到熟练程度,提高练习时的计算速度和正确率,也可以用于检验计算过程中的结果正确与否。

  (4)抓听讲习惯:要求要严格,教师针对问题进行分析、讲评的时候,应要求所有学生抬头关注,集中精力听讲(往往这样的时候学困生是不睬你的,要适当的喊他起来站个1分多钟,点一点他。),有了这个保证,讲评的效果就有了,出错的几率就就会降低了。再结合以上措施,效果就会更好。

  [写在结尾]

  有了措施,就需要有行动——老师的行动、学生的行动都要跟上,希望一段日子后会有好效果。

  也欢迎大家说说自己的好的做法,共同提高第二单元的质量

圆柱体积的教学反思11

  教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。但由于受时间与地域的影响,我们在执行教材时不能把它作为一种“枷锁”,而应作为“跳板”——编者意图与学生实际的“跳板”。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。

  1、挖掘训练空白,及时补白教材。

编者在编写教材时,也考虑了地域、学科、时间等因素,留下了诸多空白,我们使用教材时,要深入挖掘其中的训练空白,及时补白教材。中的例题教学,就挖掘出了教材中的训练空白,并没有把教学简单地停留在一种解答方法上,而是在学生预习的基础上引导学生深入思考,在解决问题的过程中体会“从不同的角度去考虑问题,将得到不同的结果”的道理,从而学会多角度考虑问题,提高解决问题的能力。

  2、找出知识联系,大胆重组教材。

数学知识具有一定的结构,知识间存在着密切的联系,我们在教学时不能只着眼于本节课的教学,而应找出知识间的内在联系,帮助学生建立一个较为完整知识系统。的表1仅帮助学生熟练掌握体积公式,此外无更多的教学价值,而重组后的`表2不仅实现了编者的意图,而且为“比例”的教学作了提前孕伏。走出了数学教学的“只见树木,不见森林”的“点教学”的误区。

圆柱体积的教学反思12

  在本节课的教学中,教师根据教学的需要,充分利用现实生活中的素材,把教材中有关圆柱的提积的应用所呈现的内容变为现实生活中的问题,变书本知识为生活中的知识。

  本节课中教师没有过多地教学生,而让学生回归到生活原形中去,应用所学的知识解决了生活中的实际问题,使本来很枯燥的圆柱的体积应用的.题材生活化,增加了学生的信息量,提高了学生体会数学奥秘的积极性。学生体会到了生活中处处有数学,数学就在我们身边,知识才是我们解决实际问题的“金钥匙”。通过寻找这些信息背后的信息,学生掌握了知识、形成了技能。同时也感受到了数学应用的广泛性以及数学与生活的紧密联系。

  但在本节课中也有不足的地方,如①由于中心问题空间较大,具有挑战性,中下等学生自主探索有一定的难度;②实践中,学生独立思考和小组讨论花时间太多,影响了后面的教学,这都是以后在教学中应注意的问题。

  总之,随着数学的发展,数学的应用也越来越广泛。作为教师的我们,应该提供给学生充分的机会,让学生运用已学过的数学知识解决问题,在问题的解决过程中,发展学生的思维能力,用数学的眼光去感知、去观察、去应用。

圆柱体积的教学反思13

  《圆柱的体积》不仅要让学生掌握圆柱体积的计算方法,最重要的是掌握学习的思想方法(转化),因此,教学新课前,复习了圆的面积公式的推导过程,以及长方体正方体的体积计算公式。为转化做好了铺垫。课上,出示课件:等底等高的长方体、正方体、圆柱,学生通过观察,作出猜测:(1)圆柱的体积等于长方体和正方体的体积。(2)圆柱的体积也等于底面积乘高。猜测是否准确呢?点燃学生的学习欲望。让学生根据圆的面积公式的推导过程,让学生迁移想:圆柱体能转化成什么几何形体,然后让学生用教具验证圆柱转化成长方体过程,并讨论思考:这个圆柱体与转化后的长方体相比什么变了,什么没变?从而得出结论圆柱的体积等于底面积乘以高。有一种推导过程是我没有预设到的:一学生回答,长方体的长是圆柱的底面周长的一半,宽是底面半径,高不变。所以圆柱体积=底面周长的一半×底面半径×高。我没有否定她的回答,接着又让学生动手实践操作,让学生发现长方体与圆柱之间的联系,利用圆的周长和面积把圆柱体积的也转化成底面积乘以高。这样有学生的积极主动的参与,不仅创造性的建立了数学模型而且发现圆柱体的转换成长方体的规律,掌握了一种重要的学习方法,转化。

  为了培养学生解题的`灵活性,进行分层练习,拓展知识,发散思维。如:已知圆柱底面积和高,怎样求圆柱体积;已知圆柱底面半径和高,怎样求圆柱体积;已知圆柱底面直径和高,怎样求圆柱体积;已知圆柱底面周长和高,怎样求圆柱体积;已知圆柱侧面积和高,怎样求圆柱体积;已知圆柱底面积和体积,怎样求高;已知圆柱体积和高,怎样求底面积等。

  在本节课的教学过程中还存在诸多的问题。

  1、演示圆柱的体积的时候,因为学生手中没有学具,教师教具的局限性,演示时后面的学生看不清楚。

  2、在圆柱体经过切割、拼接之后转化为近似长方体

  的时候,应多给后进生留有观察、讨论的时间,他们的思维反应能力比其他学生较慢,应给于他们一定的空间和时间,让后进生也积极参与到课堂的学习中,使全班同学共同进步。

  3、在解决实际问题的时候,不仅要注重公式的应用,还要注意计算能力的培养。

圆柱体积的教学反思14

  圆柱的体积计算方法的推导。教学前我就思考,不仅要让学生掌握圆柱体积的计算方法,最重要的是掌握学习的思想方法(转化),因此,教学新课前,复习了圆的面积公式的推导过程,以及长方体正方体的体积计算公式。为转化做好了铺垫。课上,出示挂图:等底等高的'长方体、正方体、圆柱,学生通过观察,作出猜测:

  (1)圆柱的体积等于长方体和正方体的体积。

  (2)圆柱的体积也等于底面积乘高。猜测是否准确呢?

  点燃学生的学习欲望。让学生根据圆的面积公式的推导过程,让学生迁移想:圆柱体能转化成什么几何形体,然后让学生用学具验证圆柱转化成长方体过程,并讨论思考:这个圆柱体与转化后的长方体相比什么变了,什么没变?从而得出结论圆柱的体积等于底面积乘以高。还有一种推导过程是我没有预设到的:一学生回答,长方体的长是圆柱的底面周长的一半,宽是底面半径,高不变。所以圆柱体积=底面周长的一半×底面半径×高。首先我对这种方法加以肯定,然后利用圆的周长和面积把圆柱体积的也转化成底面积乘以高。这样有学生的积极主动的参与,不仅创造性的建立了数学模型而且发现圆柱体的转换成长方体的规律,掌握了一种重要的学习方法,转化。

圆柱体积的教学反思15

  本节课是学生在学习了长方体和立方体的基础上进行教学的,它是一种比较常见的立体图形,学生对圆柱都有初步的感性认识。本节重点是圆柱的'特征和圆柱侧面积的计算。上课伊始,我先组织学生复习圆柱的特征、长方体和正方体体积以及圆的面积计算公式推导过程,由此引出圆柱的体积一课题。为了让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。

  反思不足: 1、练习有些少。在学生练习这个环节中,最能反映学生掌握情况。应该再从不同的角度设计多种练习题目来考察学生的知识掌握情况。2、本节课节奏较快,没有去检测一下学生每个环节掌握了没有。3、数学要应用于生活,应该多出些有关生活实际的练习题。

【圆柱体积的教学反思】相关文章:

《圆柱的体积》教学反思10-26

圆柱的体积的教学反思02-27

圆柱的体积教学反思02-18

圆柱的体积教学反思范文10-25

圆柱的体积教学反思[优秀]07-09

(精品)圆柱的体积教学反思07-09

《圆柱的体积》教学反思15篇02-13

《圆柱体积》教学反思04-20

圆柱的体积教学反思15篇06-13

《圆柱的体积》教学反思(精选15篇)06-23