《一次函数》教学反思
作为一名到岗不久的人民教师,我们要有一流的教学能力,通过教学反思能很快的发现自己的讲课缺点,教学反思应该怎么写呢?以下是小编收集整理的《一次函数》教学反思,欢迎阅读与收藏。
《一次函数》教学反思1
教材分析
1、 本节课首先从最简单的正比例函数入手.从正比例函数的定义、函数关系式、引入次函数的概念。
2、 八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的'常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。
学情分析
1、虽然这是一节全新的数学概念课,学生没有接触过。但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。
2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习其它函数的基础。
3、学生认知障碍点:根据问题信息写出一次函数的表达式。
教学目标
1、 理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。
2、 能根据问题信息写出一次函数的表达式。能利用一次函数解决简单的实际问题。
3、 经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。
教学重点和难点
1、一次函数、正比例函数的概念及关系。
2、会根据已知信息写出一次函数的表达式。
教学过程
《一次函数》教学反思2
通过教学活动,充分体现了学生自主、合作、探究的学习方式。重视学生的数学学习过程和他们的个性体验,充分让学生体会数学源于生活中的实际问题,又应用于生活。突出人人学有价值的.数学的思想。帮助学生在学习过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得数学活动的经验。给学生充分思考的空间和时间。让学生自已互相学习,形成互动的局面。互相评价、互相尊重和互相信任。在一种和谐、热烈讨论的气氛中进步成长,从而激发学生的学习兴趣。但在如何把握好时间,使教学紧凑一些,增大教学容量,教学灵活选用各个教学环节还不够。
《一次函数》教学反思3
函数是描述现实世界中变化规律的数学模型。而二次函数在初中数学中占有重要的地位,同时也是高中数学学习的基础,作为初、高中数学衔接的内容,二次函数在中考命题中一直是“重头戏”,二次函数和一次函数的综合应用就成了中考的热点。这节课的教学重点是二次函数的性质和一次函数的性质的灵活运用;难点是怎样建立二次函数和一次函数的关系。
教学目的及过程:
首先复习了二次函数和一次函数的有关基础知识,二次函数的定义、开口方向、对称轴、顶点坐标及函数的增减性。一次函数的定义、图像及函数的增减性。采用特值法的形式检验学生的基础知识掌握情况,采取这样的方法学生易懂。
由于本节课是二次函数与一次函数的综合应用问题,重在通过学习总结解决问题的方法,以“启发探究式”为主线开展教学活动。以小组合作探究为主体,使每个学生都能够动手动脑参与到课堂活动中,充分调动学生学习的积极性和主动性,促使学生能够理解和建构二次函数与一次函数的关系,在建构关系的过程中让学生体验从问题出发到列二元一次方程组的过程,体验用函数思想去描述、研究量与量之间的关系,达到不但使学生学会,而且使学生会学的目的
例题设计:
在平面直角坐标系x中,过点(0,2)且平行于x轴的直线,与直线=x-1交于点A,点A关于直线x=1的对称点为B,抛物线C1:=x2+bx+c经过点A,B
(1)求点A,B的坐标
(2)求抛物线C1:的.表达式即顶点坐标
(3)若抛物线C2:=ax2(a≠0)与线段AB恰有一个公共点,结合函数图像,求a取值范围。
存在的问题:
一、 复习过程中才发现有极少部分中等偏下的学生记不住抛物线的顶点坐标公式,还有的学生把抛物线的顶点坐标和所学过的一元二次方程求根公式相混淆,发现有的学生没有真正的理解抛物线的顶点坐标是怎么推导得来的。
二、 在课堂教学实践中发现,学生的认知和老师的想象是不一样的,如,在求a取值范围的时候,百分之九十五的学生都沉默不语,为什么?
反思:
一、教师既要站在学生的角度思考问题,也要从教师的角度考虑安排每堂课的整体设计。站在学生角度思考问题,教师就能够体察学生的所思所想,了解学生困惑的根源,教师就可以有针对性的调整教学设计。如上面中为什么学生都沉默不语?通过课后了解才知道他们不懂得抛物线=ax2和线段AB有一个交点是一个怎样的图像情形。根本原因是教师在备课中忽视了学生思考水平的现状和知识储备情况,导致教师用自己的思考代替了学生的思考,学生的思考与实践脱节。这就要求老师要从学生的实际出发,了解学生的学习以及思考水平状况,善于启发和引导,才能较好的达到教学效果。
二、课要精讲,题要精练。教师在讲课时要抓住每节课的重点,把知识点讲透;设计习题时,要紧紧围绕知识点。除非是综合训练,忌多而乱。上述问题一就反映了前期基础知识不扎实。关于《二次函数与一次函数的综合应用》课中,我共选了三道题,虽然完成了教学任务,但学生对每一道题的理解不够透彻,没有时间把题拓展,如,抛物线=ax2与线段有两个交点时,a的取值范围又怎样呢?所以,教师既要精讲也要带领学生精练,把知识点弄透,同时,在教新课前也要在教学设计时把基础知识复习融入到题中,这样既复习了基础知识又有利于学生分析和理解,体现了学生的“最近发展区”。
《一次函数》教学反思4
结合一次函数的教学谈谈自己的几点肤浅感受、几处遗憾之点!
“一次函数”这一章的重点是一次函数的概念、图象和性质,由于学生初次接触函数的有关内容,因此,教科书对一次函数的讨论比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握二次函数、反比例函数的学习方法。学习这一章后,我对新教材有了一些更深的认识。
纵观整章内容,一次函数的实际问题比较多,备课时我头一直很痛:想不通学生刚刚接触函数为什么就有这么多实际问题呢?而且教材对一次函数的解析式与图象之间的关系讲解较少,例如k体现了图像的什么特征?除了增减性外还有没有别的体现,在实际问题中的实际意义是什么?b体现在什么方面等等。
在实际的教学中的确遇到了以上困难,教学内容十分不好处理,课时又比较少,我还是附加了很多内容进去,否则有些题目真的不会做!说是素质教育,但学生还是要考试的呀。
下面我就把平时遇到的困难大体呈现一下:
1.“一次函数的性质”中无b对函数的图象的影响,但题中有,要补讲:
一次函数y=kx+b有下列性质:
(1)当k>0时,y随x的增大而______,这时函数的图象从左到右_____;
(2)当k<0时,y随x的增大而______,这时函数的图象从左到右_____.
(3)当b>0时,这时函数的图象与y轴的交点在:
(4)当b>0时,这时函数的'图象与y轴的交点在:
要让学生学会化一次函数的草图,不但平时分析题目有好处,对中考中的许多问题都有用。例如(1)y=2x+3不过第象限;(2)函数y=kx中y随x的增大而减小,那么y=kx+k不过第象限等等。
2.图像的平移问题:
(1)将直线y=3x向下平移2个单位,得到直线_____________________;
(2)将直线y=-x-5向上平移5个单位,得到直线_____________________.
现在学生就只能通过草图来研究,很浪费时间。实际上在后面我们会学到图象平移的规律,与多位教师讨论后,我们用草图再结合b的意义来解决,让学生多一点感性认识,少一点理论上的结论,这正是新课程对学生自主动手推导能力培养的一种体现!
3.实际问题中k的意义:
这个要根据具体的行程问题,销售问题等总结出来:k在时间、路程的图像中指速度,速度越大图像越陡,速度越小图像越缓。在销售件数、销售金额图像中指单价,单价越贵直线越陡,单价越便宜直线越缓。这对中考中的最后一题选择题是很有好处的,具体列举几个实例:
(1)为鼓励居民节约用水,某区将出台新的居民用水收费标准:1若每月每户居民用水不超过4立方米,则按每立方米2元计算;2若每月每户居民用水量超过4立方米则超过部分按每立方米4.5元计算。现假设该市某户居民某月用水x立方米,水费为y元,则y关于x的函数图像表示正确的是()
《一次函数》教学反思5
一、教学目标:
1、知道一次函数与正比例函数的定义。
2、理解并掌握一次函数的图象特征和相关性质。
3、弄清一次函数与正比例函数的区别与联系。
4、掌握直线平移法则的简单应用。
5、能应用本章的基础知识熟练的解决数学问题。
二、教学重难点:
教学重点:初步构建比较系统的函数知识体系。
教学难点:对直线平移法则的理解,体会数形结合思想。
三、教学过程:
1、一次函数与正比例函数的定义:
一般地,若y?kx?b(其中k、b为常数且k?0),则y是x的一次函数。
对于一次函数y?kx?b,当b?0且k?0时,y?kx,则称y是x的正比例函数,k为正比例系数。
2、一次函数与正比例函数的区别与联系:
⑴从解析式看:y?kx?b(k?0,b是常数)是一次函数;y?kx(k?0,b?0)是正比例函数。
显然,正比例函数是一次函数的特例,一次函数是正比例函数的推广。
⑵从图象看:正比例函数y?kx?k?0?的图象是过原点?0,0?的直线;
一次函数y?kx?b?k?0?的图象是过点?0,b?且与直线y?kx?k?0?平行的直线。
基础训练:
⑴请写出一个图象经过点?1,?3?的一次函数解析式: 。
⑵直线y??2x?2不经过第 象限,y随x的增大而 。
⑶若点P?2,k?在直线y?2x?2上,则点P到x轴的距离是 。
⑷已知正比例函数y??3k?1?x,若y随x的增大而增大,则k的取值范围是 。 ⑸过点?0,2?且与直线y?3x平行的直线是 。
⑹若直线y??1?2m?x经过点A?x1, y1?和点B?x2,y2?且x1?x2时y1?y2,则m的`取值范围是 。⑺若y?2与x?2成正比例且x??2时y?4,则x? 时y??4。
⑻若直线y??5x?b与直线y?x?3都交于y轴上的同一点,则b的值为 。
四、教学反思:
教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的思路去做就很高效了。课堂训练以竞赛形式进行,似乎有一定的刺激性,但缺少后续的刺激活动,学生不能保持持久的紧张状态。课前先把所有的复习任务全部交给学生完成,教师指导学生浏览教材、查阅资料,归纳本章的基本概念、
基本性质和基本方法,并收集与每个知识点相关且有针对性的问题,也可自己编题,同时要把每一个问题的答案先做出来,尽量一题多解,再由小组长组织小组成员汇编,在汇编过程中要去粗取精。课堂就是以小组为单位让学生展示自己的舞台,学生在这个舞台上是主角,学生在这个舞台上可以成果共享,学生在这个舞台上收获着自己的收获。台上,学生是主角,台下,学生也是主角。通过这节课,我从另一个角度体会到了减轻学生负担的深刻含义,它不单指减少学生课后学习的时间,更重要的是必须提高学生学习的质量和效率。我这节课的失败之处就在于过分注重了前者而忽略了实效性。在今后的复习课教学中,我要多思多想、多问多听(问问老师、听听学生的想法),力求在真正减轻学生负担的基础上打造高效课堂。
《一次函数》教学反思6
一次函数与正比例函数作为函数中最简单、应用最为广泛的函数,本节课我力图通过问题情境的创设,例题的设计,学生活动的安排,使学生能深刻地感受到数学与生活的联系。
本节课开始以教师乘车从渭南到故市这一问题情境,拉近了师生的距离,同时能使学生感受到生活处处可见函数的.影子。由于小组之间有一个竞争机制在里面(评选出本节课的最佳合作小组),在探究活动中,学生探究的积极性相对比较高,参与率高,达到了学生积极参与的目的。在选题中,由于选题典型且由易到难,逐层递进,有利于学生的思考。本节课力求让所有学生积极参与,因此在各小组得分差距很大的情况下(3、6小组尚无得分),我采取了激励措施,将较易的题留给他们,并对回答对的同学掌声鼓励,极大地调动了这两个小组同学的积极性。对于学习目标的呈现也有利于学生学完本节课之后对自己的检测、对照、小结,当堂目标检测学生完成也相对较好。总体上,本节课体现了以学生为主体,以问题为载体,以小组活动为核心展开,教师的亲和力也拉近了师生之间的距离,及时鼓励评价学生,课前语和结束语激励学生学知识学做人。
本节课的不足之处:
1、本节课放的还不够开,可能是由于课堂容量较大,担心任务是否能按时完成,因而部分题没有留充分思考、交流的空间,显得处理问题有些着急。
2、小组的合作学习尚且还处于形式化倾向,学生小组间的对学、群学体现不明显。
今后需要做的:
1、尽可能放手学生,留给学生充分的思考交流的空间,使学生能在知识的生成上获得发展。
2、加强小组间的实质性合作,尽可能做到对学、群学相结合,实现兵教兵、兵练兵,使学生真正成为课堂的主人,知识的主人。
3、小组展示中尽可能让学生小组成员都积极参与,培养他们的团体意识。
《一次函数》教学反思7
一、教材分析
1、地位和作用
这一节内容在学生学习了前面一节一次函数后通过讨论一次函数与一元一次不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的不等式的认识,构建和发展相互联系的知识体系。它不是简单的回顾复习,而是居高临下的进行动态分析。
2、活动目标
①理解一次函数与一元一次不等式的关系。会根据一次函数图像解决一元一次不等式解决问题。 ②学习用函数的'观点看待不等式的方法,初步形成用全面的观点处理局部问题。
③经历不等式与函数问题的探讨过程,学习用联系的观点看待数学问题的辨证思想。
④增强学生学数学,用数学,探索数学奥妙的愿望,体验成功的感觉,品尝成功的喜悦。
3、教学重点:(1).理解一元一次不等式与一次函数的转化关系及本质联系
(2).掌握用图象求解不等式的方法.
教学难点:图象法求解不等式中自变量取值范围的确定.
二、学情分析
八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。
三、学法分析
1、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。
2、学生在小组合作学习中体验学习的快乐。合作交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。
四、教法分析
由于任何一个一元一次不等式都能写成ax+b>0(或<0)的形式,而此式的左边与一次函数y=ax+b的右边一致,所以从变化与对应的观点考虑问题,解一元一次不等式也可以归结为两种认识:
⑴从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于0)的自变量x的取值范围。
⑵从函数图像的角度看,就是确定直线y=ax+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。教学过程中,主要从以上两个角度探讨一元一次不等式与一次函数的关系。
1、“动”―――学生动口说,动脑想,动手做,亲身经历知识发生发展的过程。
2、“探”―――引导学生动手画图,合作讨论。通过探究学习激发强烈的探索欲望。
3、“乐”―――本节课的设计力求做到与学生的生活实际联系紧一点,直观多一点,动手多一点,使学生兴趣高一点,自信心强一点,使学生乐于学习,乐于思考。
4、“渗”―――在整个教学过程中,渗透用联系的观点看待数学问题的辨证思想。
《一次函数》教学反思8
教学中,我提倡学生做一道题收获一道题:不仅要会将给定的题目分析得解,还要学会总结反思解题规律、方法思路、技巧、数学思想方法等,最重要的是要充分发挥成题的作用,学会对一道成题从不同角度进行变式,在变化中分析、思考,从而达到将知识学活、学会学习的目的。这里以“一次函数基本知识”的复习课为例,谈谈如何用一道题目的变式囊括所有知识点的复习.
例题:已知函数y=(3-k)x-2k+18是一次函数,求k的取值范围.
设计意图:考查一次函数的定义:y=kx+b中k≠0.
一变:k为何值时,一次函数y=(3-k)x-2k+18的图象经过原点;
设计意图:考查点与图象和点的坐标与函数解析式之间的对应关系:
图象过原点等价于x=0,y=0满足y=(3-k)x-2k+18.
二变:k为何值时,一次函数y=(3-k)x-2k+18的图象与y轴的交点在x轴的上方.
设计意图:考查一次函数的图象与x轴、y轴的交点问题,并能将文字语言翻译成数学语言:与y轴的交点在x轴的上方表示交点的纵坐标,即-2k+18(一般式中的b)大于0.
三变:k为何值时,一次函数y=(3-k)x-2k+18y随x的增大而减小(或:(a,b)(m,n)均在一次函数y=(3-k)x-2k+18图象上,且an,求k的取值范围).
设计意图:考查一次函数的性质.
四变:k为何值时,一次函数y=(3-k)x-2k+18图象经过一、二、四象限?
设计意图:学习一次函数的最重要方法是数形结合.结合图象,将问题转化为解关于k的不等式组.
五变:k为何值时,一次函数y=(3-k)x-2k+18图象平行于直线y=-x;
设计意图:考查决定两条直线位置关系的因素,这里只涉及简单的情形:两条直线平行等价于3-k=-1(即一般式中的k相等).
六变:直线y1=(3-k)x-2k+18与直线y2=2x+12交于点P(-1,a).
(1)求k的值;
(2)x为何值时,y1〉y2;
(3)求直线y=(3-k)x-2k+18、直线y=2x+12与x轴围成的`三角形的面积.
设计意图:(1)交点的意义:点P(-1,a)同时满足y=(3-k)x-2k+18与直线=2x+12,从而求得a,k;(2)解决第二问时有多种方法:解不等式,数形结合;(3)第三问需要借助图象明确所求的图形,弄清点的坐标与线段长的关系(这是学生的易错点,补充强化练习:如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,求k的值).
“一题多变”教学收获反思:
1、在本节课中,通过对一次函数y=(3-k)x-2k+18的多角度变式,将转化的思想、数形结合的思想含儿不露地加以应用,学生的思维、能力均得以发展。
《一次函数》教学反思9
相对前面两课内容来说,这一课的内容较为容易理解,再加上有前面两课的基础,学生应该好学习些。因此,这一课我在以下两个方面要求学生做好,图形解方程组的画图规范,利用图形进一步理解前一课的内容:“当x为何值时,y1<y2,y1=y2,y1>y2的题目类型”。
在课堂上,学生能够结合例题,总结出利用函数的图象解二元一次方程组的解题步骤:变形、画图、标交点、得结论。利用足够充分的.时间让学生画图象解方程组,学生标交点的工作做得还不是很好,为此,提出了怎样才确保是实实在在可以看出是由图象得到交点坐标,得到方程组的解的,学生讨论的结果还是让我们满意的,不但由交点画垂线,在数轴上标出交的横坐标和纵坐标,而且把交点坐标在图上写出来,做到双保险。
利用函数的图象复习了上一课的学习难点,学生理解的人数更多了,在利用函数的增减性认识和理解,确实效果会更好些,需要注意的是利用函数的增减性理解须从交点出发向左或者向右变化来理解。
要动员学生议论或争论起来,这才是最有效的手段,个别辅导时,有同学在我的办公桌前进行争执,我看到了学生因相互的讨论而掌握,学生自己能够真正动起来,这是最好的,我希望学生是学习的主人,课堂上要努力让他们成为课堂的主人。
《一次函数》教学反思10
本节课的复习目标是:理解一次函数的关系式,掌握一次函数的图象及有关性质;会用待定系数法求一次函数关系式;能运用一次函数的相关知识解决简单的数学实际问题,培养学生数形结合的能力。教学重难点为一次函数关系式及图象性质的综合运用。对于本节内容我将教学案分为三部分:
一、课前复习;
二、例题精讲;
三、课堂作业。
有效的课前复习它有利于督促学生及时复习回顾本节内容,有利于教师了解学生掌握知识的情况,所以课前我先将学生的复习作业及时批阅,课上将学生作业中失误率较高的题目及时评讲,查漏补缺;课上选取典型的例题,其中考查的知识点有已知点求直线的关系式,有已知直线求点,一次函数的增减性、一次函数与方程、与不等式之间的关系,有利用数型结合的思想解题,有一次函数与坐标轴围成的图形的面积问题,也有一次函数的实际应用等等,在例题的选取上基本已将大多数知识点容纳其中,课上在学生的主动参与下,一起完成了例题的讲解,最后还剩下不到5分钟的时间一起完成课堂检测。
本节课中始终以一次函数的图象与性质为主线进行复习,课堂教学时重视学生对基础知识的理解和基本方法的指导,重点解决学生在平时学习和练习中的难点和易错点,有针对性的'进行复习讲解,本课采用“教学案”的形式,实现了课下与课上相结合,学案与教案相结合,学生自主学习与教师讲解诱导相结合,让学生自主、探究、主动地学习。把思维空间留给学生,把学习主动权还给学生,把自主时间还给学生,同时“教学案”的设计注重了夯实基础,复习实行“低起点、多归纳、快反馈”的策略,注重激发全体学生学习数学的自信心,教学中也注重学生解题的准确性及表达的规范性。当然本节课也有很多有待改进的地方,比如课上老师的总结有时不及时,在讲解直线上点P使得PM+PN取得最小值时总结不够,应该将题目中的共性找出来分析,找出题目中的基本量进行分析,有利于学生遇到变式题时不至于无处下手。
《一次函数》教学反思11
本节课,我们讨论了一次函数解析式的求法,利用一次函数的知识解决实际问题。求一次函数的解析式往往用待定系数法,即根据题目中给出的两个条件确定一次函数解析式y=kx+b(k≠0)中两个待定系数k和b的值;待定系数法是求函数解析式的基本方法,用“数”和“形”结合的思想学习函数。
通过本节课的教学发现:
1、有一小部分的学生还是不懂得看函数图像。
2.用一次函数解析式解决实际问题时,不注意自变量的.取值范围。
3.结合图象求一次函数解析式,不理解函数解析式和解方程组间的转化。
另外,运用知识解决实际问题是学生学习的目的,是重点,但也是学生的难点,需要慢慢的加强训练。
1.一次函数的图象在日常生活中大量存在,通过观察和应用这些图象可以帮助我们获取更多的信息,解决更多的实际问题。
2.我们在解题的过程中,是先把实际问题转化为一次函数的问题,再利用一次函数的知识解决。
《一次函数》教学反思12
优点
1、教学目的明确,突出重点、基本完成教学任务。作业新颖,适中。
2、教态自然大方,语言、表情亲切,面部表情丰富。教师的声音应抑扬顿挫,有助于调动课堂气氛,引起学生的兴趣和注意。情绪控制较好,能较好的组织教学,教师的基本功扎实,能较好的起到示范的作用。
3、选题有趣味性、针对性强。选择贴近生活的中考题,并采用了灵活的形式组织教学,使整 个教学过程充满活力。
4、学生自主且自信。自主学习是建立在学生一定的知识基础上的较高层次的学习活动,更是一种学习态度的体现。整个学习过程中学生的主动性较强,积极参与,积极表现,对自己的.表现充满自信。
5、在讲授典型例题时,运用不同方式引导,重在启发引导,语言精确、形象,富于启发性,过渡流畅自然,板书加强了规范化要求;运用不同方式手段展示所学内容,生动而形象,化繁为简、使抽象变具体。
建议
1、进一步加强近几年我省相邻地区和课改地区中考试题研究。
2、立足教材,夯实基础,落实好基础知识,面向全体。
备注在课堂中如何创设情景让孩子们感受到我们所学的知识与生活机有着密切的联系。引导学生自由发挥他们的想象力,而不是一味的让以有的事物或形象局限了孩子们的想象力。想象无限,创意无限,从而引出无穷乐趣,快乐的学习!如何让孩子在课堂中感受快乐,在课后的自学中找到快乐,如何让学习成为一种快乐的体验?
《一次函数》教学反思13
从这节课的准备来看,针对教学内容从课题的引入、知识的呈现方式、学生的学习活动安排、知识的巩固练习等多方面进行了多次的修改。
通过课堂的实际实施感觉上也不是尽善尽美,还有令人不满意的地方。教师应该通观教材,把握知识的脉络体系,又要站在高于教材的位置统筹安排。这样,教师才能灵活的把握课堂教学。而现在,教师缺乏的正是这一点,还是为了教而教。按部就班,设计的条条框框较多,多了一些稳重,少了一些灵活。而在课堂上,教师面对的是数十名学生,师生之间、生生之间考虑问题的角度、方式要灵活的多、开放的多,有可能教师固定的设计会影响到学生的思维发展。从这一角度讲,教师应在把握知识的基础上。结合学生的表现,灵活多样的处理知识。学生是学习的主体,学生活动是新教材的一大特点。新教材在知识安排上,往往从实例引入,抽象出数学模型。通过学生的观察、分析、比较、归纳,探究知识的发生、发展、形成的过程,得出结论,并能运用解决实际问题。侧重于学生能力的培养,让学生知道学什么,如何学。因此,教学过程中,如何安排学生的学习活动至关重要,本节课,学生活动设计了三个方面。一是通过画函数图象理解一次函数图象的形状,二是两点法画一次函数的图象,三是探究一次函数的图象与k、b符号的关系。
在学生活动中,如何调动学生的积极性、互动性,提高学生活动的实效性。值得老师们探讨。为了达到上述目的,我结合每个活动,都给学生明确的目的和要求,而且提供操作性很强的程序和题目。如在活动一中,要求学生观察图象的形状,两条直线的位置关系。
在活动二中,强调两点法(直线与坐标轴的`交点)画直线。在活动三中,探究k、b符号与直线经过的象限与增减性的关系。学生目标明确,操作性强,受到了较好的效果。本节课的重点是由一次函数的解析式确定函数图象,研究函数性质。由函数图象的位置判断解析式中k、b符号。体现了数学中非常重要地数形结合的思想。这段内容的教学,还是从学生活动出发,从具体的实例研究起,观察图象的位置和性质,在按照k、b的符号分类讨论,使学生建立起数形之间的联系。还要找到数形间的结合点,明确k的符号决定直线的什么位置,b的符号又决定了什么。为了加深学生对知识的理解,课上设计了由解析式画函数图象的草图,由草图的位置判断解析式中k、b的符号的练习,收到了一定的效果。
《一次函数》教学反思14
本节课是在学生已经探究过一次函数、一元一次方程及一元一次不等式的联系的基础上进行的学习。本节教学内容是《一次函数与一元二次方程(组)》,“一个二元一次方程对应一个一次函数,一般地一个二元一次方程组对应两个一次函数,因而也对应两条直线。如果一个二元一次方程组有唯一的解,那么这个解就是方程组对应的两条直线的交点的坐标”。通过本节课的学习,让学生能从函数的角度动态地分析方程(组),提高认识问题的水平。
本节课的引入。我通过一个一次函数形式问题提问,学生看出既是一次函数,也是二元一次方程,由此创设情境,引出一次函数与方程有必然的关系,使学生主动投入到一次函数与二元一次方程(组)关系的探索活动中;紧接着,用一连串的问题引导学生自主探索、合作交流,从数和形两个角度认识它们的关系,使学生真正掌握本节课的重点知识。
在探究过程中,我把学生分为一个函数组一个方程组,使学生能身临其境感受知识,并及时的`进行团结合作教育,把德育教育渗透在教学中。在探究中,我把握自己是组织者、引导者和合作者的身份,及时引导学生进行知识探究。但在实际操作过程中还是把握的不够好,没有很好的起到引导者的作用,缺乏情感性的鼓励,没有使大多数学生能完全积极融入到的知识的探讨与学习中。
本节的图象解法需要迅速画出图象,利用图象解决问题。而我的失误主要发生在画图象上。大部分学生不能迅速画出图象,并找准交点,这就使他们理解本节知识有了困难。
为了培养学生的发散思维和规范解题的习惯,我引导学生将“上网收费”问题延伸为拓展应用题,根据前面的例题教学,设置了两个小问题:
(1)上网时间为多少时,按方式A比较划算?
(2)上网时间为多少时,按方式B比较划算?
前后呼应,使学生有效地理解本节课的难点。但在此题的探讨过程中,我做的不够好,没有给学生充分思考的时间及学生探讨解决问题的方法,有点操之过急,而且我当时也没有采取补救措施,这是我的失误,也是这节课的失败之处。
一次失误也反映了一位老师驾驭课题的能力,今后,在我的课堂教学中要注重培养这种能力,关注细节,完善课堂和各个环节,不留遗憾,提高教育教学此文转自质量。
《一次函数》教学反思15
一元一次方程、一元一次不等式和二元一次方程组在初一的时候就已经学过了,而《用函数观点看方程(组)与不等式》这节就要求学生利于函数的观点重新认识、分析。
在复习导入过程中,我给出一个一元一次不等式的的`题目:3x—2>x+2。同学们都笑开了花,有同学说:“这么容易,老师,我们已经不是初一的小孩子了。”也有同学直接说出这个不等式的解。这时,我提出了问题:“谁能把刚刚学习的一次函数和这个不等式联系到一起?同学们可以大胆想象。”由于学过利用函数观点看方程,有很多同学反映比较快,说:“画两个一次函数y=3x—2和y=x+2的图像,然后再观察”。我按照他的思路讲解了这种方法,同时提出还有没有更简单的方法,引导同学通过一个函数图像来解决问题。
这节课要结束了,突然有个同学问:“老师,本来我们能用初一的知识解题的,为什么要弄的这么麻烦啊?”“问的好,这节课的目的就是培养同学们数形结合思想,为今后的学习打好基础”。
【《一次函数》教学反思】相关文章:
一次函数教学反思04-01
一次函数图像教学反思(精选16篇)04-02
一次函数与一元一次不等式教学反思04-18
教学反思体育教学反思03-16
《让》教学反思12-12
教学的反思01-07
教学反思03-02
《》教学反思05-16