轴对称图形的教学反思
身为一名到岗不久的人民教师,教学是我们的工作之一,通过教学反思可以很好地改正讲课缺点,那么教学反思应该怎么写才合适呢?以下是小编为大家收集的轴对称图形的教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
轴对称图形的教学反思1
在上课之前,我在黑板上画了一支蝴蝶,却只画出它的一半,说“这只蝴蝶和我们玩捉迷藏呢,谁能帮我们把它找出来?”让学生上来将它画完整。这部分设计主要是让学生初步感知轴对称图形。既让学生进入了学习的情境,同时激发了学生的学习兴趣。接着观察挂图上的轴对称图形,让学生找找他们共同的特点,使学生兴趣浓厚的,注意力集中的主动去探究对称图形的共同特征。通过学生的`发现交流,让学生在不知不觉中对轴对称图形建立初步的表象。
在教学“轴对称图形”时,我设计形式多样的操作活动,充分发挥学生的自主能动作用,让他们通过折一折、剪一剪、摆一摆、画一画等多种方式,制作一个轴对称图形,展示在黑板上,最后大家一起评出最美的作品。并且让孩子总结你是怎么制作的?怎样制作才能保证你的作品是轴对称图形呢?进一步深化轴对称图形的特点。
这部分环节的设置,使学生逐步体验轴对称图形的基本特征,感知轴对称图形的对称美,从感性上升到理性。学生经过“操作一观察一概括一认识”的学习过程,自主参与知识的发生、发展、形成的过程,使学生很好的掌握了知识。
最后读一读“你知道吗?”带领学生寻找生活中的对称图形,欣赏大自然中的对称美,以及古今中外,著名的对称的建筑(人民大会堂,故宫等)课前布置他们收集了相关的资料,大家一起共享,使学生深深体会到数学就在我们身边,体会对称的科学与美学的价值。做到知识性、技能性、思想性和艺术性溶为一体。
轴对称图形的教学反思2
对称是一种最基本的图形变换,是学习空间与图形知识的必要基础,对于帮助学生建立空间观念,培养学生的空间想象力有着不可忽视的作用。
本册第一次教学轴对称图形,教材中安排了形式多样的操作活动,在本节课的教学中,我结合教材的特点,设计了三次操作活动,让学生在动手操作中逐步体验轴对称图形的基本特征。
一、创设情境教学,请会折叠衣服的同学上台来展示一下叠衣服的方法。从而引出课题。接着1、出示轴对称物体:天安门、飞机、奖杯、让学生观察它们有什么共同特点?学生观察发现,它们的两边都是一样的。2 剪小树:通过不同剪法师生共同评价得出这些图形两边都一样的,所以先把纸对折,然后再剪,剪定后再展开,就是这棵小树了。
这是本节课第一次操作活动,安排在学生观察生活中的对称现象后,目的在于让学生在操作中初步感知轴对称现象。学生这次操作活动看似一次无目的操作活动,但要一棵小树甚至一个漂亮的窗花,不去寻找规律,也是非常困难的,通过学生的交流,能初步感知到两边一样的图形可以对折起来再剪,这就是轴对称图形特征的初步感知。
二、动手画一画,折一折,通过把同学们看到的物体画下来得到下面的图形(天安门、飞机、奖杯等)进行分组操作讨论,得出结论——图形对称后,两边完全重合了,从而得出什么样的图形是轴对称图形。
这是本节课的第二次操作活动,安排在学生对轴对称图形的特征有了初步感知之后。学生此次操作是由目的性,有导向性的操作,目的是在操作活动过程中,探究图形对折后折痕两边的部分完全重合这一基本特征,在此基础上解释出轴对称图形的概念。
三、想办法做出以各轴对称图形、并分组展示自己的作品。
这是本节课达三次操作安排,且是在学生对轴对称图形有较为正确系统的认识之后,意在操作活动中巩固深化对轴对称图形的认识,学生这次操作活动手段是多样的,作品也是丰富多彩的。三次的操作活动目的不同,所产生的成效也截然不同,学生在这次活动中,通过有序、有层次的操作更加深对轴对称图形特征以认识,充分概念之轴对称图形的基本特征。
1
本节课最大感受是由于课前准备充分,所有的练习和操作活动较为自然的串联在参观的情景中,课堂结构紧凑,学生兴趣浓烈,让学生用不同的方式、以不同的角度体会轴对称图形的特征。
2、五年级数学下册《因数与倍数》的教学反思
《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。
(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。
(2)“约数”一词被“因数”所取代。这样的变化原因何在?我认真研读教材,通过学习了解到以下信息:签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。
(3)因此,本套教材中删去了“整除”的数学化定义,而是借助整除的模式na=b直接引出因数和倍数的概念。
虽然学生已接触过整除与有余数的除法,但我班学生对“整除”与“除尽”的`内涵与外延并不清晰。因此在教学时,补充了两道判断题请学生辨析:
11÷2=5……1。问:11是2的倍数吗?为什么?因为5×0.8=4,所以5和0.8是4的因数,4是5和0.8的倍数,对吗?为什么?
特别是第2小题极具价值。价值不仅体现在它帮助学生通过辨析明确了在研究因数和倍数时,我们所说的数都是指整数(一般不包括0),及时弥补了未进行整除概念教学的知识缺陷,还通过此题对“因数”与乘法算式名称中的“因数”,倍数与倍进行了对比。
3、五年级数学下册《合数与质数》的教学反思
在《合数与质数》的教学中,我跳出了教材的束缚,体现以“以人发展为本”的新课程教学理念,尊重学生,信任学生,敢于放手让学生自己去学习。在整个教学过程中,学生能从已有的知识经验的实际状态出发,通过操作、讨论、归纳,经历了知识的发现和探究过程,从中体验了解决问题的喜悦或失败的情感。 2
一、学生参与面广,学习兴趣浓。
新课程教学标准要求我们教学中要“让学生经历数学知识的形成与应用过程。”因此,在教学中,我注重面向全体学生,使学生在愉悦的气氛中学习,唤起学生强烈的求知欲望。如:让学生利用学具去摆拼,用“2、3、4……12个小正方形分别可以拼成几种长方形的方法去体验质数与合数的不同之处,以操作代替教师讲解,激发了学生的学习兴趣和求知欲,使全体同学都参与到“活动”中来,课堂气氛愉快热烈,学生学得轻松、学得牢固,从而大大提高了课堂教学效率。
二、从学生的角度出发,把课堂的主动权还给学生。
课堂教学,学生是“主角”,教师只是“配角”,教学中应把大量时间和空间留给学生,使每个学生都有学习、讨论、观察,思考的机会。在教学中我除了给学生动手拼摆的机会,还让学生把几个数(如2、3、4、5、6、7、8、9、10、11、12等)进行分类。尽管学生可能分类标准不一样,但他们都能把只有两个因数的数分在一类,把含有2个以上的因数的数放在一起。这样教师就可以顺势引导学生说出什么叫质数,什么叫合数。再让学生用自己的语言归纳合数与质数。在这个过程中,引导学生参与知识的形成过程,有利于培养和提高学生获取知识的能力。
三、点燃学生智慧的火花,让学生真正活起来。
爱因斯坦说过:“提出一个问题比解决一个问题更重要。”在本节课的课后我设计了这样一个环节,你还想研究质数、合数有关哪些方面的知识。这个学习任务既是给学生在课堂上一个探究的任务,也是给学生在课外留下一个拓展的空间。使每个学生都能根据自己不同的水平去探究属于自己的数学空间,从而让不同的学生在数学上得到了不同的发展。
4、五年级数学下册《公因数和最大公因数》的教学反思
《标准》指出“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一理念要求我们教师的角色必须转变。我想教师的作用必须体现在以下几个方面。一是要引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联;二是要提供把学生置于问题情景之中的机会;三是要营造一个激励探索和理解的气氛,为学生提供有启发性的讨论模式;四是要鼓励学生表达,并 3
且在加深理解的基础上,对不同的答案开展讨论;五是要引导学生分享彼此的思想和结果,并重新审视自己的想法。
对照《课标》的理念,我对《公因数与最大公因数》的教学作了一点尝试。
一、引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联。 《公因数与最大公因数》是在《公倍数和最小公倍数》之后学习的一个内容。如果我们对本课内容作一分析的话,会发现这两部分内容无论是在教材的呈现程序还是在思考方法上都有其相似之处。基于这一认识,在课的开始我作了如下的设计:
“今天我们学习公因数与最大公因数。对于今天学习的内容你有什么猜测?” 学生已经学过公倍数与最小公倍数,这两部分内容有其相似之处,课始放手让学生自由猜测,学生通过对已有认知的检索,必定会催生出自己的一些想法,从课的实施情况来看,也取得了令人满意的效果。什么是公因数和最大公因数?如何找公因数与最大公因数?为什么是最大公因数面不是最小公因数?这一些问题在学生的思考与思维的碰撞中得到了较好的生成。无疑这样的设计贴近学生的最近发展区,为课堂的有效性奠定了基础。
二、提供把学生置于问题情景之中的机会,营造一个激励探索和理解的气氛 “对于今天学习的内容你有什么猜测?”这一问题的包容性较大,不同的学生面对这一问题都能说出自己不同的猜测,学生的差异与个性得到了较好的尊重,真正体现了面向全体的思想。不同学生在思考这一问题时都有了自己的见解,在相互补充与想互启发中生成了本课教学的内容,使学生充分体会了合作的魅力,构建了一个和谐的课堂生活。在这一过程中学生深深地体会到数学知识并不是那么高深莫测、可敬而不可亲。数学并不可怕,它其实滋生于原有的知识,植根于生活经验之中。这样的教学无疑有利于培养学生的自信心,而自信心的培养不就是教育最有意义而又最根本的内容吗?
三、让学生进行独立思考和自主探索
通过学生的猜测,我把学生的提出的问题进行了整理:
(1) 什么是公因数与最大公因数?
(2) 怎样找公因数与最大公因数?
(3) 为什么是最大公因数而不是最小公因数?
(4) 这一部分知识到底有什么作用?
我先让学生独立思考?然后组织交流,最后让学生自学课本
这样的设计对学生来说具有一定的挑战性,在问题解决的过程中充分发挥了学生的主体性。在这一过程中学生形成了自己的理解,在与他人合作与交流中逐渐完善了自己的想法。我想这大概就是《标准》中倡导给学生提供探索与交流的时间和空间的应有之意吧。
5、五年级数学下册《最小公倍数》的教学反思
《最小公倍数》这节课,如何让学生的学习的积极性较高,知识的掌握也较为自然而扎实,学生的思维也在呈螺旋式上升趋势,取得了良好的教学效果。我是从以下几个方面来做:五年级下册数学反思
一、创设情境 激发兴趣,使学生主动的参与到学习中去。
“公倍数”、“最小公倍数”单从纯数学的角度去让学生领会,显然是比较枯燥、乏味的。我从学生的经验和已有的知识出发,激发学生的学习兴趣,向学生提供充分从事数学活动的机会,增强学生学好数学的信心。使这些枯燥的知识变成鲜活、灵动数学,让学生在解决问题的过程中既学到了知识,又体念到了学数学的快乐。五年级下册数学反思
二、培养学生自主探究的能力。五年级下册数学反思
教学中,我们不要教给学生现成的数学,而是要让学生自己观察、思考、探索研究数学。在研究最小公倍数的意义时,设计了例举法找最小公倍数、最小公倍数猜想、分解质因数比较,一系列开放的数学问题,让学生有足够的思维活动空间来解决问题,自主地进行探究性活动,使学生体念到数学数学就在我们的身边。
三、挖掘不足 有待改进
1、课初的情境创设虽考虑到与例题之间的联系,但过渡得不够好。
2、如何激发学生的兴趣不止是一时之效,如何从学生的角度出发进行预案的设计,课堂中顺学而导保持学生的学习积极性是一个值得思考的问题。
轴对称图形的教学反思3
本节课主要是画对称图形的对称轴。在课的导入时,我出示飞机图,奖杯图,蝴蝶图,问学生这些图有什么共同特征?设计此环节,可以引起学生对有关知识的回忆,并对对称轴的画法我为学生作了示范,说明对称轴一般应画成点划线,提出本节课重点研究对称轴,使学生明确了学习目标。新授时,我让学生折长方形纸的对称轴,一开始,学生只折了一条对称轴,我问了学生还可以怎么折?,学生又折出了一种,我分别展示了两种折的方法,有一个学生说还有,沿对角线折,我让他折出来给大家看后,排除沿对角线折的方法,学生明白了长方形只有两条对称轴。然后研究怎样画长方形的对称轴,让学生自主发现、找出规律:量出长度,并取中点再画。教学“试一试”时,因为有了探究长方形对称轴的基础,所以放手让学生尝试折纸、作图。大部分学生找出了四条对称轴,还有小部分学生只找出了两条。在评讲时,通过操作,提高了后进生的认识。
后面的练习是重点让学生画出一个轴对称图形的'所有对称轴。但是学生找不全,甚至把第2题的第四幅图也认为是对称图形。我事先准备好的图形让学生折一折,进一步体会轴对称图形的对称轴条数不只一条。并概括出是正几边形就有几条对称轴。并强调学生要规范地去画。效果还可以。
轴对称图形的教学反思4
本节课的内容是在学生认已有的对称知识的基础上,结合学生熟悉的生活情境进行教学的,重点教学轴对称图形的性质和画法。
成功之处:
1.课件演示,直观形象。在教学中,首先出示一些轴对称图形的图片,让学生观察这些图形有什么特点,从而引出轴对称图形的概念。在例1的教学中通过出示小松树图形,让学生认识轴对称图形的对应点,然后数一数每个对应点到对称轴的'距离,从而发现轴对称图形的性质是对应点到对称轴的距离相等,最后通过连线对应点,学生会发现对应点的连线垂直于对称轴。在这一系列的教学中,学生通过课件的直观演示,非常容易发现其中的秘密,学得也自然轻松,感兴趣。
2.依据性质,学习画法。在例2的教学中,先出示图形的一半,让学生独立思考如何画轴对称图形呢?也就是另一半呢?通过学生的交流讨论,得出轴对称图形的画法,即先定点——定出每条线段的端点;再画对应点——依据轴对称图形的性质对应点到对称轴的距离相等;最后连点——依次连接每个对应点。在轴对称图形的画法中紧紧联系轴对称图形的性质,可以使学生进一步加深对性质的理解和应用。在练习二十的第6题中,主要依据轴对称图形的对应点的连线垂直于对称轴来画出图形的另一半。
不足之处:
学生在画轴对称图形时,不按照画法去做,而是照葫芦画瓢按照自己的方法去画,虽然有的同学能画对,但是也存在个别学生出现错误的画法。
再教设计:
强化画轴对称图形的画法,让学生不仅要知其然还有知其所以然,明白不仅仅画对就可以,还要知道依据轴对称图形的性质,这样才能加深对轴对称图形性质的理解。
轴对称图形的教学反思5
一、有效预习、提高效率
预习 是“学程导航·活力课堂”最核心的环节,预习的质量直接影响课堂教学的质量。《轴对称图形》一课的内容相对来说比较简单,所以我设计的预习作业是:
1.让学生通过动手折一折,初步感知轴对称图形的特征,了解对称轴。
2.让学生收集生活中的轴对称图形,试着自己做一个轴对称图形。
二、实践操作、激活思维
本课为了让学生充分体验到轴对称图形的这一特征,我安排了折一折,比一比,猜一猜,画一画,做一做等一系列活动,让学生多种感官参与教学活动。在新授教学时始终把学生放在主体地位,让学生通过观察平面图形的`特征,大胆地加以猜测,并通过小组动手操作来验证它们为什么是对称的,让每位学生都参与活动,从只重视知识的教学转变为注重学生活动的课堂生活,给学生多一点思维的空间和活动的余地;在对折的过程中引导学生观察图形的特点,让学生了解这些图形的基本特征,形成感性的认识。
三、小组合作、发挥特效
在本课中,有很多活动都是采用小组合作的形式,如交流预习成果,在平面图形中找轴对称图形,交流如何做一个轴对称图形。这样通过小组合作,在操作、交流中感知,真正体现了“兵教兵”、“兵练兵”、“兵强兵”,从而将每个人的收获变成学生集体的共同精神财富。
轴对称图形的教学反思6
本节课是新人教版二年级下册第三单元《图形的运动》第一课时,属于图形与几何部分,学生在一二年级已经认识了简单平面图形与立体图形,能够从侧面、正面、后面对物体进行观察,本单元是学生第一次接触图形的运动。在本节课的教学过程中,我将教学目标定为:
借助日常生活中的对称现象,通过观察、操作、使学生直观认识轴对称图形,能辨认轴对称图形。2.培养学生应用意识,使学生发现生活中的轴对称现象,感受对称的美。
本节课的教学我分为以下几个层次:
1.通过课前小研究的交流,暴露学生的思维盲点。
2.通过对确定是对称的几个图形的研究,使学生感受到证明对称的方法:对折后能够完全重合。进而用这种方法验证刚才不确定是否是对称的几个图形。
3.利用学生课前通过折一折剪一剪得到的轴对称图形,围绕:你是如何得到这个图形的?为什么要进行对折?为什么只在一边画图?观察展开的剪纸上的折痕,你能发现折痕两边图形有什么特点?等问题,使学生来认识对称轴,明确对称轴两边的图形完全相同,对折后能够完全重合。
4.进行拓展练习,让学生动手折出正方形、长方形、等腰三角形、圆形的对称轴。
教学中存在一下不足:
1.在小组合作折几个基本平面图形对称轴时,应该让学生动手画一画它的对称轴,学生经历过画的过程,就可以避免多次折叠的情况。
2.对对称轴和轴对称图形的强调不够,学生没有会说轴对称图形。
3.学生的.双喜字是导致后面重复折叠出现的原因之一,而且教师在大屏幕前示范错误折叠方法,导致学生更加困惑。这是示范例子选取失误。
4.对学生的回答一定要有反馈,是问题要给予解答,不能让学生带着困惑坐下。
5.学生对完全重合的理解不到位,教师在说的时候也将没有完全重合说成没有重合,应该注意语言的准确性。
轴对称图形的教学反思7
对称是一种最基本的图形变换,是学习空间与图形知识的必要基础,对于帮助学生建立空间观念,培养学生的空间想象力有着不可忽视的作用。
本册第一课教学任务就是教学轴对称,教材中安排了形式多样的操作活动,在本节课的教学中,我结合教材的特点,设计了三次操作活动,让学生在动手操作中逐步体验轴对称图形的基本特征。
创设情境教学,请会折叠衣服的同学上台来展示一下叠衣服的方法。从而引出课题。接着1、出示轴对称物体:天安门、飞机、奖杯、让学生观察它们有什么共同特点?学生观察发现,它们的两边都是一样的。2剪小树:通过不同剪法师生共同评价得出这些图形两边都一样的,所以先把纸对折,然后再剪,剪定后再展开,就是这棵小树了。
这是本节课第一次操作活动,安排在学生观察生活中的对称现象后,目的在于让学生在操作中初步感知轴对称现象。学生这次操作活动看似一次无目的操作活动,但要一棵小树甚至一个漂亮的窗花,不去寻找规律,也是非常困难的,通过学生的交流,能初步感知到两边一样的图形可以对折起来再剪,这就是轴对称图形特征的初步感知。
本节课教学中我更多的是作为学生学习的引导者、组织者、欣赏者而存在于学生的学习过程之中。教学中我更多的是关注学生对数学美感的感受、捕捉和创造能力的培养。主要体现在以下几个方面:
一、通过游戏与生活,感知对称美。
学生们都学习过剪纸,就已经会用对折的方法剪出左右两边形状、大小完全一样的图形。因此,现实中一些对称的图形学生在课前早已接触过,然而何谓“对称”,这一概念对于学生来说却是新鲜的。由此可见,如何让学生科学地认识并建立“对称”的概念是我这节课要达成的重要目标之一。因此,我设计“玩纸飞机”的这样一个活动,有效地帮助学生构建科学的“对称”概念,抓住对称的本质特征,让学生对“对称”的概念有更清晰的认识,也为其在生活中如何判断对称现象提供方法。
二、动手创造,感受对称美。
在“剪对称图形”这一环节,我注重学生主体性的探索与发现过程的经历,试图让学生通过自己的经验和思维得到对新知识的理解、顿悟。当出现一部分学生剪得慢,甚至剪不出来的情况时,我没有置之不理,更没有主导学生的思维,而是充分利用了学生的差异资源,提供了一个让学生探索、对话的时间和空间。学生在交流中相互启发,在尝试、失败、反思、再创造的过程中,理解知识,掌握方法,学会思考,并获得情感体验。尽管这里花费了一些时间,但充分体现了学生“悟”的过程。
三、欣赏图片,感悟对称美。
在学生了解了对称及对称图形后,让学生跟着图片一起欣赏各种对称物体、图形。把生活中的数学知识:对称及对称图形在课堂上进行抽象、概括后,又回到现实生活,让学生用数学的`眼光去判断生活中的对称,培养学生用数学的眼光看生活中的数学,同时,进行了美的熏陶。
四、知识迁移,直观转抽象。
最后进行的是知识迁移,将知识逻辑化。探究平面图形中哪一些是轴对称图形,哪一些不是轴对称图形?这是一个教学难点,教师发给学生各种有代表性的平面图形,放手让他们自主去解决。学生通过亲自去折一折,能够很快的辨别出来是还是不是。又趁机让学生再次对这些图形按照对称轴的条数进行分类,这样,学生对轴对称图形又有了新的认识。因为三角形、梯形、平行四边形是这一部分最容易出错的地方,所以又指导学生对这些图形进行再次总结。这一过程的自主学习,可以随机出示几道判断题。对于知识点的处理,要让学生亲自去感受、去认知、去体验,学生将会对知识掌握得更加牢固。
当然这节课也是有不足之处的,问题主要是小组合作停留在表面形式上。练习时,我给学生设计了一道具有开放性的题目:以小组为单位,让每个学生发挥想象,剪出一些轴对称图形。这个合作题目我们细想一下,是很能体现数学学习的合作学习的。然而我布置后,学生在事先准备的彩纸上剪出一些轴对称图形,基本上是独立完成的,小组之间几乎没有交流,基本停留在独立学习的层次上,没有真正地讨论和合作,没有发挥小组合作的优势,学习效果没能真正代表本小组的水平。而且在汇报时,我只是让学生展示了一下自己的作品,没有进行知识的总结和挖掘。仔细思考一下,如果让每个小组利用所剪的轴对称图形拼成一幅美丽的画,不是更能体现合作学习?合作过程中可以让组长分配,学生互帮互学,汇报时说出自己是怎样剪的,正好复习了轴对称图形的特征。我过于片面地追求课堂小组合作学习这一形式,对小组合作学习的目的、时机和过程没有进行认真设计,学生的合作流于形式,合作意识不强,只要有疑问,无论难易,甚至一些毫无讨论价值的问题都要在小组内讨论。合作又没有时间保证,有时学生还没进入状态,小组合作学习就在老师的要求下结束了。
这节课的教学,使我感受到,数学不再是简单的数学课,它将和精彩的生活共同演绎数学文化以及数学图形的美丽。“数学,如果正确地看她,不但拥有真理,而且也具有至高的美。数学提供了一种精确简洁通用的科学语言,数学语言正是以她的结构与内容上的完美给人以美的感受。”
轴对称图形的教学反思8
听了刘书洪老师的《轴对称图形》一课有以下感受:
对称是一种最基本的图形变换,是学习空间与图形知识的必要基础,对于帮助学生建立空间观念,培养学生的空间想象力有着不可忽视的作用。
本册第一次教学轴对称图形,教材中安排了形式多样的操作活动,在本节课的教学中,他结合教材的特点,设计了三次操作活动,让学生在动手操作中逐步体验轴对称图形的基本特征。
一、创设情境教学,通过画眼睛的游戏。从而引出课题。接着出示轴对称物体:天安门、飞机、奖杯、让学生观察它们有什么共同特点?学生观察发现,它们的两边都是一样的。剪小树:通过不同剪法师生共同评价得出这些图形两边都一样的,所以先把纸对折,然后再剪,剪定后再展开,就是这棵小树了。
这是本节课第一次操作活动,安排在学生观察生活中的对称现象后,目的在于让学生在操作中初步感知轴对称现象。学生这次操作活动看似一次无目的操作活动,但要一棵小树甚至一个漂亮的窗花,不去寻找规律,也是非常困难的,通过学生的交流,能初步感知到两边一样的图形可以对折起来再剪,这就是轴对称图形特征的初步感知。
二、动手画一画,折一折,通过把同学们看到的物体画下来得到下面的图形(天安门、飞机、奖杯等)进行分组操作讨论,得出结论——图形对称后,两边完全重合了,从而得出什么样的图形是轴对称图形。
这是本节课的第二次操作活动,安排在学生对轴对称图形的特征有了初步感知之后。学生此次操作是由目的性,有导向性的操作,目的是在操作活动过程中,探究图形对折后折痕两边的部分完全重合这一基本特征,在此基础上解释出轴对称图形的.概念。
三、想办法做出以各轴对称图形、并分组展示自己的作品。
这是本节课达三次操作安排,且是在学生对轴对称图形有较为正确系统的认识之后,意在操作活动中巩固深化对轴对称图形的认识,学生这次操作活动手段是多样的,作品也是丰富多彩的。
三次的操作活动目的不同,所产生的成效也截然不同,学生在这次活动中,通过有序、有层次的操作更加深对轴对称图形特征以认识,充分概念之轴对称图形的基本特征。
本节课最大感受是由于课前准备充分,所有的练习和操作活动较为自然的串联在参观的情景中,课堂结构紧凑,学生兴趣浓烈,让学生用不同的方式、以不同的角度体会轴对称图形的特征。
轴对称图形的教学反思9
《轴对称图形》这个内容主要借助生活中的实例和学生操作动手活动来判断哪些物体是对称的,找出其物体的对称轴,并初步地、直观地了解轴对称图形的性质。
轴对称图形的教学重点是使学生初步认识轴对称图形的一些基本特征,难点是掌握判别轴对称图形的方法和看到一半想另一半的空间想象力。在此之前学生已经学过一些平面图形的特征,形成了一定的空间观念,自然界和生活中具有轴对称性质的事物有很多,也为学生奠定了感性基础。
1、从激趣入手,以兴趣为先导,营造轻松愉快的课堂气氛。针对小学生年龄偏低,抽象思维能力和空间想像能力还相对较弱的实际情况,我设计了猜一猜这个活动,出示一些简单的对称图形的一半,让学生去猜另一半,这样不但启发了学生的空间想象能力,还能让学生在情境中发现数学信息,找出数学规律,让学生体会到生活处处有数学。
2、通过动手操作,剪一剪、折一折、画一画等活动,让学生用自己的思维方式开放性地去探索、去发现、去再创造,培养学生的动手操作能力和创新能力,使学生通过大量的感性经验形成表象,进一步体会轴对称的含义,把“学”数学变为“做”数学,提高了学生动手实践的能力,让学生积极地参与到课堂学习当中。学生在整个动手操作的过程中,进一步体会了对称图形的形成,感受到了对称图形的内在美。通过欣赏同学的作品这一活动,使学生在欣赏美丽的对称图案的同时又与大家分享自己作品的愉悦心情,让学生在满足自己成功感的同时也体验到数学的美和创造的美。学生在观摩同学作品和相互交流的过程中也会受到启发而获得一份宝贵的学习资源。
3、拓展延伸,挖掘教材中可发展学生创造思维的素材,让学生自由地折纸、剪图案,发挥他们的想象,创造性地剪出各种美丽的图案,这样不仅注重学生知识的掌握,更注重学生各方面能力的发展;学了“轴对称图形”后,又让学生找找说说生活中利用了“轴对称图形”的例子,从很大程度上培养了学生留心观察身边事物的`良好习惯,进一步体会到数学来源于生活,学数学是为了生活服务的思想。
总的来说,这节课能把更多的时间与空间还给了学生。站在学生的角度看,本节课应该是从学生的实际出发,遵循学生的认知规律以及他们的发展需求,较好地体现了教学中“以生为本”的教学理念。
轴对称图形的教学反思10
今天,我上了一节关于利用多媒体辅助教学的数学课,内容是三年级下册《轴对称图形》。对称是一种最基本的图形变换,是学习空间与图形知识的必要基础,对于帮助学生建立空间观念,培养学生的空间想象力有着不可忽视的作用。因此,我借助网络,展示具体的图形、形象的动画,引导学生观察发现——它们的两边都是一样的,并结合学生动手操作,运用试一试、剪一剪、围一围、折一折等方法,通过不同折法,师生共同小结得出结论:对折后,折痕两边的部分完全重合,从而逐步体验轴对称图形的基本特征。当学生对轴对称图形的特征有了初步感知之后。让学生进行操作,目的是让学生在操作活动过程中,验证图形对折后折痕两边的部分完全重合这一基本特征。在此基础上解释出轴对称图形中对称轴的概念。然后,让学生运用轴对称图形的特征,先把纸对折,画上简单的图案,然后再剪,剪好后再展开,就成了一个轴对称图形。这样加深了学生对轴对称图形特征的认识。
一般听来的忘得快,看到的记得住,而动手做的学得好。在学习数学过程中,学生的直观操作可耻下场驱动内在的思维活动,使外显的动作促进数学思考,把具体的感知上升为抽象的思维。本课要掌握“对折——重合——完全重合”这三个重要的知识点。首先通过自己的判断把我之前准备的几个平面图形按对称图形和不对称图形进行分类。在这个活动中,学生自己发现了“对折”这一个重要方法。再通过每个同学自己动手把对称图形对折,引出了“挡住了”“合在一起了”这些学生用自己的语言对“重合”的理解。最后通过对折后的对称图形与不对称图形两者的比较,引出对两种重合的区别,从而深刻理解了“完全重合”。最后设计了一个对“折痕”比较的过程,让学生知道只有把对称图形对折后能完全重合的折痕才是“对称轴”这样的图形才是“轴对称图形”可以说,在整个认知过程中,学生通过分一分,折一折,画一画是能够完全掌握这节课的'学习重点。自主的学习比老师单纯的讲授,效果要好得多。
知识来源于生活,当然知识也应该应用于生活。从对轴对称图形的学习,从中也感悟到对称美。通过网络,搜索生活中丰富多彩的轴对称图形,让学生欣赏到了许多关于运用轴对称原理设计图案,以及利用轴对称知识创造出的美丽的民族文化,让学生切实体会到对称在生活中无处不在,它为我们的生活增添了美丽的色彩,加上配乐欣赏,让学生更加陶醉于美丽的画面中,让本节课达到了**,同时更激发了学生创作的欲望。欣赏完后,很多同学都有跃跃欲试的兴奋,很想自己亲手创造关于轴对称的作品。由于时间关系,我把学生的这种创作激情延伸到课后,让学生们在课后,运用本节课所学到的“对称”的知识,亲手设计一幅精美的图画。第二天,我回访了一下,发现学生交上来的作品,大部分同学都完成的相当不错,有画的,有剪纸的,有贴画的,看来通过这节课的学习,学生的收获是丰富的,这让我也感到非常欣慰。
数学不再是简单的数学课,它将和精彩的生活共同演绎数学文化以及数学图形的美丽。但是要达到“学生乐学、教师乐教”的效果,完全是得益于多媒体技术在课堂上的有效辅助。图生动、画形象,不仅激发学习热情,而且让重难点得到了有效的突破,练习的一一呈现,节省了教师板书的时间,大大提高了课堂教学效率。多媒体的辅助教学,能让我们提高教学效率,但是要想真正地用好它,用活它,实现信息技术与学科的有效整合,教师在课前还得付出非常多的心思,从教学素材的收集到课件的制作,无不凝聚了教师的所有心血。
在今后的教学中,我将不断实践、不断地探索信息技术与学科的有效整合,不断地发挥农远工程在中小学教育中的作用,将是我们一线教师今后几年的一项重要课题。
轴对称图形的教学反思11
一、从课堂反思
1、这堂课从生活中引入,激发了学生兴趣,内容较简单,学生容易接受,在上课的过程中更重视的是学生的合作学习,以及数学“建模”能力的培养。为下节课学习打下基础。
3、在课堂的第二个环节中,学生归纳出到线段两端的距离相等的点的集合是在线段的'垂直平分线上。然后由特殊到一般,从线段到两点,让学生的思维得到一个提升。我想学生应该掌握了作对称轴的作法,然后将其进行推广到两点、角等其他轴对称图形,作出轴对称图形的对称轴以及成轴对称图形的对称轴。如练一练、说一说、一起去探索、挑战自我等等从中激起学生主动参与学习的兴趣,培养学生的动手能力,充分体现学生主体地位。从而达到培养学生学数学,用数学的意识,养成探究问题,与同学合作的良好习惯。
2、上了这节课,我觉得上好一节课的因素很多,也发现了自己很多不足的地方,在平时上课的时候,对提问的形式和语言还嫌单一。我最大的体会就是,在现行的开放式的课堂中,关键是放的出去的同时要收的回来,可能是平时注入式的简单易行,或者是不大重视,上课中的语言的漏洞很多,在以后的教学中要多加揣摩和重视。
二、从教学方法反思
“差异导学”教学方法以“尊重差异”为基础,先“引导发现”,后“讲评点拨”,让学生在克服困难与障碍的过程中充分发挥自己的观察力、想象力和思维力,再加上多媒体的运用,使学生真正成为学习的主体,同时让优生帮助后进生,达到共同学习,共同提高的目的。
三、从学生反馈反思
这堂课学生能积极思考,认真学习,课后作业都能及时完成。作业质量较好,但对从特殊到一般的实际应用上不能很好理解。对于稍难点的实际问题转化为数学式子表达有一定困难。这是我后面课堂要注意的地方,这对优生的培养很重要。
轴对称图形的教学反思12
《轴对称图形》是北师大版三年级(下册)教材的教学内容。通过本节课学习,意在让学生体会生活中的对称现象,初步认识轴对称图形及对称轴,并能根据其特征准确进行判断,同时在活动中让学生领略轴对称图形的美妙和神奇,感悟数学与生活的联系。教学过程中能够按照学生的认知规律,充分发挥教师的主导作用和学生的主体作用,创设问题情景,激发学生学习的欲望,采取“折一折,比一比”等实践活动,让学生充分认识认识轴对称图形的基本特点,即对折后两边能完全重合,经历知识的形成过程,感受了学习数学的快乐,培养学生观察、交流、操作的能力。下面我将从两个方面——优点和缺点对本节课进行反思。
优点:
1、本节课层次清晰,课堂结构紧凑,学生兴趣浓烈,让学生用不同的方式、以不同的角度体会轴对称图形的特征。课堂上能很自然亲切的和学生打成一片,并且注重培养孩子良好学习习惯,如在做每一道练习题时先让学生读题,并引导学生准确理解题目意思。注重引导孩子完整表达能力。
2、教学方法新颖,激起学生探究的兴趣。如“对折”是“轴对称图形”的.研究方法,以往教学中,教师一般都会直接要求同学进行下列操作活动:请你们先把图形对折,再观察一下这些图形对折后有什么特点。这样的做法显然忽视了学生学习的主动性,漠视了学生学习的心理需求,如果没有要动手折一折的强烈愿望,学生只能处在被动接受的状态,因为老师要我们折,所以我要折一折,至于为什么折,学生是茫然而盲目的。
怎样才能激发学生主动学习的欲望?课堂上,我们先引导学生观察“心形,小鱼,双喜字,房子,字母”有什么共同的特点?学生通过大胆的猜测说出左右两边或上下两边完全一样,这时老师一头雾水的问:你们怎么知道它们两边完全一样呢?有什么方法可以证明吗?促使他们主动寻求证明方法解决问题,提出本节课的研究方法“对折”,这样的处理使接下来学生的操作活动,目标变得清晰起了,同学们带着明确的方法和活动目标进行活动,学习知识的过程自然而流畅,凸显了数学学习方法价值。
不足之处:
1、《轴对称图形》一课,就教材特点来说,很容易把课上得生动、有趣,但本节课有点欠缺,就是对本节课的重点知识(对折后完全重合)强调的不够,让学生感触的不够,学生对折完之后,应该再让学生说一说对重合的理解,让孩子完整的表达知识的本身。
2、小组汇报的时候多给孩子一些时间,让孩子完整的把自己的想法表达出来,然后再请其他同学进行补充,而不是教师代替他们说。有一句话是这么说的:“我们要的不是喧闹的回答而是静下心来的倾听”,所以要对课堂上认真倾听的同学进行表扬和鼓励,引导学生逐步养成认真倾听,多动脑思考的习惯。
3、板书有点随意,今后应加强粉笔字的练习。
轴对称图形的教学反思13
对称是基本的图形变换,学习空间和图形知识的基础,能够帮助学生建立空间观念。
本册第一次教学轴对称图形,教材中安排了形式多样的操作活动,在本节课的教学中,我结合教材的特点,设计了三次操作活动,让学生在动手操作中逐步体验轴对称图形的基本特征。
一、创设情境教学
1、会折叠衣服的同学上台来展示一下叠衣服的方法。从而引出课题。
2、出示轴对称物体:天安门、飞机、奖杯、让学生观察它们有什么共同特点?学生观察发现,它们的两边都是一样的。
3、小树:通过不同剪法师生共同评价得出这些图形两边都一样的,所以先把纸对折,然后再剪,剪定后再展开,就是这棵小树了。
4、是本节课第一次操作活动,安排在学生观察生活中的对称现象后,目的在于让学生在操作中初步感知轴对称现象。
5、生这次操作活动看似一次无目的操作活动,但要一棵小树甚至一个漂亮的窗花,不去寻找规律,也是非常困难的,通过学生的交流,能初步感知到两边一样的图形可以对折起来再剪,这就是轴对称图形特征的初步感知。
二、动手画一画,折一折:
1、过把同学们看到的物体画下来得到下面的图形(天安门、飞机、奖杯等)进行分组操作讨论,得出结论——图形对称后,两边完全重合了,从而得出什么样的图形是轴对称图形。
2、是本节课的'第二次操作活动,安排在学生对轴对称图形的特征有了初步感知之后。学生此次操作是由目的性,有导向性的操作,目的是在操作活动过程中,探究图形对折后折痕两边的部分完全重合这一基本特征,在此基础上解释出轴对称图形的概念。
三、想办法做出以各轴对称图形、并分组展示自己的作品。
1、是本节课达三次操作安排,且是在学生对轴对称图形有较为正确系统的认识之后,意在操作活动中巩固深化对轴对称图形的认识,学生这次操作活动手段是多样的,作品也是丰富多彩的。
2、次的操作活动目的不同,所产生的成效也截然不同,学生在这次活动中,通过有序、有层次的操作更加深对轴对称图形特征以认识,充分概念之轴对称图形的基本特征。
3、节课最大感受是由于课前准备充分,所有的练习和操作活动较为自然的串联在参观的情景中,课堂结构紧凑,学生兴趣浓烈,让学生用不同的方式、以不同的角度体会轴对称图形的特征。
轴对称图形的教学反思14
(1)立足现实,活跃思维
新课标指出:“数学课程不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……”新课标的这一理念强调了数学与生活紧密联系,在教学中,引入轴对称图形,我注意让学生联系自己的生活实际,寻找生活中轴对称图形的'踪影,让他们感受到数学与生活的密切联系,学会用数学的眼光看待周围事物,从中体验数学的价值。
(2)体现学科综合的思想,感受数学之美
这节虽然是数学课,但是它所涉及的领域远远超出了数学学科的范围,与美术、美学都有交叉。学生在课堂上学习数学知识——轴对称图形,但同时也感受到了对称美,数学与美学,虽然一个属于自然科学,一个属于社会科学,二者似乎无多大联系,然而,数学中却处处存在着美。数的美,形的美;比例的美,对称的美……本课正是从数学角度指导学生认识这类图形,了解其特点,并会画对称轴,但无论是起始部分的导入,还是研究学习部分,乃至精心设计的美化教室……无处不在渗透一个字---美!
(3)生活是数学的最高境界
对称图形是学生生活中司空见惯的,但是学生并不知道这些图形是因为对称而美,从生活中采撷对称的图、物,体现数学来源生活。让学生装扮教室,不仅提高学生制作对称图形的能力,更重要的是提高学生应用美、创造美的能力。
轴对称图形的教学反思15
当一些学生的发言与众不同和富有独特见解时,教师要善于倾听,及时捕捉,并给予适当的评价。当学生之间就某些问题发生争执时,教师要抓住争执的焦点以便引出思维碰撞的火花,从而培养学生思维的清晰性、系统性和综合性。
一位同事在执教“轴对称图形”时,有这样一个教学片段:
教师先出示长方形、正方形、三角形、平行四边形、梯形、圆等学生已经学过的平面图形,然后让学生选择一个最有把握的图形,说说它是不是轴对称图形。
生1:我认为长方形是轴对称图形。
生2:我认为正方形是轴对称图形。
生3:我认为平行四边形是轴对称图形。
(这位学生的回答给了教是一个极大的“意外”,连听课的教师也没有意识到学生会有这样的想法,同时也为上课的教师捏了一把汗。这位教师在备课时显然也没有预设到,因为所有的参考资料上都表明平行四边形不是轴对称图形但教师并没有立即作出否定和解释,而是
让学生接着说说他的道理)
生3:因为当平行四边形的四条边都相等时,我把它眼对角线折叠后就能完全重合,因此,这种特殊的平行四边形时轴对称图形.
(这样的说法很有说服力,不少学生都不由自主地点点头)
师:同学们,他刚才说的`话有一个词用的特别好,你们知道是哪个词吗?
生4:我知道。是“特殊”。其是当平行四边形的四条边都相等时,它就是菱形,是特殊的平行四边形。
(这位同学的话音刚落,教师的同学和老师都不由自主地为他鼓掌喝彩)
师:跟你们握握手,谢谢你们在课堂上创造了不同的声音。如果课堂上只有一种声音,那会是多么地单调呀!
(在教师的鼓励下,学生的发言更加精彩)
生5:一般的三角形不是轴对称图形,但特殊的三角形,如等腰三角形,等边三角形都是轴对称图形。
生6:一般的梯形不是轴对称图形,但特殊的梯形,如等腰梯形是轴对称图形。
生7:所有的圆都是轴对称图形。
……
教学中,我们一方面期待有“不同声音”的出现,一方面又害怕并抑制着这种现象的发生,因为我们担心这样“不协调的声音”会让我们“手足无措”,会让我们无法把握教学的进程,会让我们被学生牵着鼻子走,甚至还会影响课堂教学任务的顺利完成。如果我们每一位教师都能想这位教师一样,鼓励学生“制造”和善于“捕捉”有利于他们发展的“不同声音”我们的教学课堂将会是一个动态生成的课堂,是一个成功的课堂,是一个精彩的课堂。
【轴对称图形的教学反思】相关文章:
《轴对称图形》教学反思10-20
轴对称图形教学反思03-02
《轴对称图形》教学反思06-09
数学《轴对称图形》教学反思03-18
《轴对称图形》数学教学反思07-03
《轴对称图形》教学反思通用10-19
《轴对称图形》教学反思(精品)09-24
《轴对称图形》数学教学反思03-09
《轴对称图形》数学教学反思【通用】08-27