分式教学反思

时间:2024-07-25 09:43:03 教学反思 我要投稿

分式教学反思

  作为一位优秀的老师,我们要有一流的课堂教学能力,在写教学反思的时候可以反思自己的教学失误,优秀的教学反思都具备一些什么特点呢?以下是小编帮大家整理的分式教学反思,希望能够帮助到大家。

分式教学反思

分式教学反思1

  分式一章的第一课时教学,利用引例列出的代数式进行归纳比较,得出分式的概念,抓住分式概念最本质的特征“分母含有字母”,从而研究:分式有意义无意义的条件、分式的值为零的条件、分式的值为正数负数整数等条件,解决各种数学问题。

  在解决分式的值为零,分子为零且分母不为零的题型时,有考虑字母的值的取舍的题目,采用学生在黑板上的说理方法比我原来的方法更有效,学生的方法是:由分子x2-4=0求得x=2及x=-2,再分别将求得的`字母的值代入分母进行计算,使分母为零的情况舍去,使分母不为零的保留,进行这样的取舍检验,对于分母不是一次多项式的情况就能顺利地区分出来,学生使用的这个方法好。

  在转化求解时,发现学生对一元一次不等式组的解题还是比较生疏的,为了使学生全面提高学习效果,在遇有类似情况时还是复习一下更有效果。学习的主体是学生,不是课堂的花架子。

  对于-a2-1一定为负数,也同样要师生协作,生生协作讨论研究,确保全体学生理解和灵活应用。

  对于题目:整数x取何值时,分式4/x-1的值为整数,学生的理解和解题也是一个难点。

  由于学生没有课本,我们的课堂学案应设计的更具实用性,课堂知识内容的表达要更加便于学生理解和接受。

分式教学反思2

  通分教学反思

  通过本节课的教学,给我感悟最深的是,有些教学内容学生自己能够去解决的`教师用不着去教,应该充分发挥学生自主探索的"作用。“通分”这节内容,本身比较简单,它的简单之处,不仅仅在于教材本身,而是学生先前已有“分数的基本性质”,“求最小公倍数”以及“分数大小比较”这些知识底蕴。因此,教学中,我先通过复习引新后,然而放手让学生自己去探索如何去“通分”,理解什么是“通分”。例如:先让学生做一做,后在小组中议一议,再翻开书看一看,这样学自然就掌握了什么叫“通分”,怎样去“通分”,教师只是点拨一下“通分”的关键一步在哪里。值得注意的地方在哪里?通分中应用了哪些知识,这就可以了,这样下来,学生学得主动,学得轻松,得益实惠,效果显著。当然,在比较异分母分数的大小时,学生可以选择不同的方法,比如化成分子相同或化成小数也可以!

分式教学反思3

  通过本周的教学,学生已基本掌握了分式的有关知识,并且获得了学习代数知识的常用方法,感受到代数学习的实际应用价值。下面是我在教学中的几点体会:

  一、深挖教材,合理渗透数学思想方法,培养学生各种能力。

  本章可以让学生通过观察、类比、猜想、尝试等活动学习分式的运算法则,发展他们的合情推理能力,所以教学时重点应放在对法则的探索过程上。一定要让学生充分活动起来。在观察、类比、猜想、尝试当一系列思想活动中发现法则、理解法则、应用法则,同时还要关注学生对算理的理解,以培养学生的代数表达能力、运算能力和有理的思考问题能力。可是我在知识的传授上并没有注重探索、类比法则,而重在对分式四则运算法则的运用和分式方程的运用上,没有抓住教学的关键环节恰当的选择教学方法。今后要避免类似事情的.发生。

  二、着力体现建构主义思想,展现数学的连续性与延展性。

  本部分内容应建立在学生对分数的认识的基础上,通过已有的知识进行建构,适当的对比能极大提高学生的认知质量。

  分式运算是代数恒等变形的基础之一,但是不能盲目的加大运算量与题目的难度,重点应放在对运算过程推理的理解上。

  幂的运算,前期已经掌握了正整数指数幂的运算,本次应拓展到整数指数幂的运算,注意衔接过程。

  另外,对《教材》上关于分式的具体问题一定要重视,并关注学生在这些具体活动中的投入程度,看他们能否积极主动地参与,其次看学生在这些活动中的思维发展水平——能否独立思考,能否用数学语言表达自己的想法,能否反思自己的思维过程,进而发现新的问题。

分式教学反思4

  本节课教学内容较少。上课时先让学生带着四个问题进行阅读,学生在阅读过程中,能正确的解决前三个问题。在处理第四个问题时,我先通过计算( )÷3=0,迁移到( )÷x=0,从而得出值为零的条件。在练习中我设计了分式(|x|—1) / (x+1) 值为零的条件,再进一步强调分式有意义的'大前提条件才有值为零,大多数同学都能理解并掌握。

分式教学反思5

  不同于整式运算先学加减,再学乘除,分式的运算先学乘除,再学加减。因为分式的加减包括同分母分式的加减和异分母分式的加减,而无论哪一种运算其结果都不可能避免得要进行约分;异分母分式的加减要先通分,再加减,可见分式的加减是分式乘除的再巩固和再应用。本节课先学习了分式加减中的同分母分式与异分母分式相加减,不涉及混合运算,主要让学生们理解算理,明确运算顺序(先乘方、再乘除、最后加减)和每一步的算理和算法。

  在本节课的教学过程中要进行二次备课,因为要密切关注孩子们的学情变化,及时点播与引导,以达到清晰思路,准确运算的`目的。在教学过程中有以下几点需要改进与纠正:

  1,本节课课件使用量有点多,孩子们对运算的处理过程印象不够深,应该多板书;

  2、教师讲解多,基于怕孩子们学不会的心理,总是反复强调算理和运算过程,显得课堂上老师讲的过多,孩子主体性得到压制;

  3、孩子们板演少,没有暴露出运算过程中的缺点,也就没办法及时纠正;

  4、教师板演不公正,需要加强练习;

  5、讲课的内容有点多,孩子们接受比较吃力。

  对于以上的教学过程中存在的问题,我已经进行过深刻的反思,在日后的教学中坚决克服以上缺点,力争节节课让孩子们都能轻松听懂,明白算理。

分式教学反思6

  本节课我主要采取“361”的课堂教学模式,让学生自习的基础上进上步加深对知识的掌握。这种学习模式符合课改要求,但是经过教学发现,以以往的教学中,学生在解分式方程时需要花费很长时间,学生在有限的时间内难以完成教学任务,但本节课,通过学生的课前的预习,节约的课堂上的时间。

  教学上应多用类比的方法,与分数进行类比教学,使学生明确分式与分数、分式与整式等方面的区别与联系,体会分式的模型思想,进一步发展符号感,一定能取到事半功倍之效。而解分式方程的基本思想是把分式方程转化为整式方程。解可化为一元一次方程的分式方程,也是以一元一次方程的解法为基础,只是需把分式方程化成整式方程,所以教学时应注意重新旧知识的'联系与区别,注重渗透转化的思想,同时要适当复习一元一次方程的解法。

  解可化为一元一次方程的分式方程,也是以一元一次方程的解法为基础,只是需把分式方程化成整式方程,所以教学时应注意重新旧知识的联系与区别,注重渗透转化的思想,同时要适当复习一元一次方程的解法。至于解分式方程时产生增根的原因只让学生了解就可以了,重要的是应让学生掌握验根的方法。

  要使学生掌握解分式方程的基本思路是将分式方程转化整式方程,具体的方法是“去分母”,即方程两边统称最简公分母。

  在教学过程中,由于种种原因,存在着不少的不足。

  1、回顾引入部分题目有点多,应该选择简单有代表性的一两个题目,循序渐进,符合人类认知规律。

  2、教学重点强调力度不够。对学生理解消化能力过于相信,而分式方程的难点就是第一步,即将分式方程转化成整式方程。在这里,需要特别强化这个过程,应该对其进行专项训练或重点分析。例如,就学生的不同做法进行分析,让他们明白课本的这种方法最简单最方便。

  3、时间掌握不太好。学生预习还不够充分,导致突发事件过多,以致总结过于匆忙。

分式教学反思7

  《分式》一章检测结果出来了,学生成绩很不理想。学生们很多不该错的题做错了。是什么原因致使错误频出呢?我辗转反侧。

  一是分式的运算错的较多。分式加减法主要是当分子是多项式时,如果不把分子这个整体用括号括上,容易出现符号和结果的错误。所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。其次,分式概念运算应按照先乘方、再乘除,最后进行加减运算的顺序进行计算,有括号先做括号里面的。 二是分式方程也是错误重灾区。

  (一)是增根定义模糊,对此,我对增根的'概念进行深入浅出的阐述,

  ⑴增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根; ⑵增根能使最简公分母等于0;

  (二)是解分式方程的步骤不规范,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的模式中跳出来;

  (三)是列分式方程错误百出。

  针对上述问题,我从基础知识和题型入手,用类比的方法讲解,与列整式方程一样,先分析题意,准确找出应用题中数量问题的相等关系,恰当地设出未知数,列出方程;不同之处是,所列方程是分式方程,最后进行检验,既要检验是否为所列分式方程的解,又要检验是否符合题意。

  《分式》一章在教学上应多用类比的方法,与分数进行类比教学,使学生明确分式与分数、分式与整式等方面的区别与联系,体会分式的模型思想,进一步发展符号感,一定能取到事半功倍之效。

分式教学反思8

  本节的教学重点是探索分式方程概念、会解可化为一元一次方程的分式方程、明确分式方程与整式方程的区别和联系。教学难点是如何将分式方程转化成整式方程。

  下面结合教学过程谈谈自己的几点感悟:

  一、知识链接部分我设计了分式有无意义和找几组分式的最简公分母,帮助学生回忆旧知识,并且为本节课解分式方程扫清障碍。

  反思:在这个环节里,出现了一个问题,就是对学生估计过高,尤其是最简公分母的找法中下游的学生把旧知识忘了,造成浪费了课上的时间。

  二、由课本中的百米赛跑的应用题引出分式方程的概念。我把课本中的阅读和一起探究改为几个小问题让学生自主探究然后小组内交流讨论。由于学生对于应用题的掌握太差,造成在这个环节浪费了太多的时间。

  反思:因为本节课的重点和难点是解分式方程,所以在以后的教学中我个人认为这一部分应该不用。改为解简单的整式方程,再给出几个分式方程让学生自己判断直接得出分式方程的意义,节省出时间让学生重点学习和练习解分式方程。本节课值得欣喜的是四班的优生反应灵敏,

  四、让学生自学课本例一,也就是解分式方程,分析课本做法的依据,和自己的'做法是在否一致,会用课本的方法解题。看完后,我让学生自己做到导纲上。很多同学看完后还不是很理解,所以,我又让小组自己讨论了一下,弄明白如何做题。最后,我在黑板上板书了例题,然后,让学生将自己的纠正一下。

  反思:这个内容是这节的重难点,由于前面已经做过铺垫,让学生自己尝试解过分式方程,所以,在这里我设想的是学生看完课本,明白教材的做法,自己会运用同样的方法解决分式方程。但是,在实际的操作过程中,发现一个问题,同学们并没有真正理解教材时怎么处理的,他们被第二环节中自己的做法禁锢住了,很多同学都先通分。通分很好,但通分的目的还是为了去分母。这点我没有强调到位。同时,检验的过程我没有板书在黑板,只是口头强调了一下,致使很多学生印象不深,没有进行检验。

  纠正措施:重点强调化分式方程为整式方程的依据和做法。就这一步,安排几个题进行专门训练,小组合作,直到每个组员都能找到最简公分母,并会去掉分母为止。将第二课时提到这节点拨,在这节就让学生明白分式方程为何要检验,从开始就让学生养成检验的好习惯。

  五、归纳解分式方程的一般步骤。根据上面的解题过程,小组总结出解题步骤。(在提示中,学生初步了解了大体步骤)

  六、自学课本例二,弄明白后做到导纲上。

  (这个环节设置的目的是让学生进一步熟悉分式方程的解法。注意一些细节问题。)

  七、巩固练习。做导纲四道题。小组批阅。

  八、总结这节课的知识。(由于前面进行不是很顺利,总结有些匆忙)

  总体反思

  这节课是一堂新授课。因此,让学生对知识有透彻的理解是最重要的。我们的导纲也设置了很多的环节来引导学生,提高学生的学习兴趣。

  本节课的关键是如何过渡,究竟是给学生一个完全自由的空间还是让学生在老师的引导下去完成,“完全开放”符合设计思路,符合课改要求,但是经过教学发现,学生在有限的时间内难以完成教学任务,因此,先讲解,做示范,再练习更好些。

  在教学过程中,由于种种原因,存在着不少的不足。

  1、回顾引入部分题目有点多,难度有些高,没有达到原来设想的调动积极性的作用。应该选择简单有代表性的一两个题目,循序渐进,符合人类认知规律。

  2、由于经验不足,随机应变的能力有些欠缺,对在教学中出现的新问题,应对的不理想,没有立刻采取有效措施解决问题。例如,在复习整式方程时,学生并不像想象中对整式方程解题过程很了解,我就引导大家一起复习了一下,在这里,如果再临时出几个题目巩固一下,效果也许更好些。

  3、教学重点强调力度不够。对学生理解消化能力过于相信,在看例一的过程中,每一步的依据都进行了讲解,而分式方程的难点就是第一步,即将分式方程转化成整式方程。在这里,需要特别强化这个过程,应该对其进行专项训练或重点分析。例如,就学生的不同做法进行分析,让他们明白课本的这种方法最简单最方便。同时,通过板书示范分式方程的解题。

  4、时间掌握不够。备学生不够充分,导致突发事件过多,时间被浪费了,以致总结过于匆忙。

  这次的课让我感触颇深。在各位老教师无私地指导和细心地讲评中,我更看到了自己的不足,在今后的教学中,我会多思考,充分的将“学生备好”,多积累经验,向老教师请教,培养自己应对突发情况的能力,做个成功的“引导者”。

分式教学反思9

  该节内容属于北师大版八年级数学下册第三章《分式》,本节主要讨论分式的加减法运算法则。

  为了完成教学目标,首先通过行程问题引入分式的加减运算,让学生感受到数学和生活的联系,加强学习分式加减法的必要性。既体现了加减运算的意义,又让学生经历了从实际问题建立分式模型的过程,发展学生有条理的思考及代数表达能力。

  为了突出重点从简单的情况入手,低起点,顺应着学生的认知过程,递进式的.设置台阶,使学生利用类比的方法自然获得同分母分式加减运算的法则。在此基础上,引导学生探索异分母分式的加减运算,得到异分母分式加减法运算的法则。同时,让学生尝试用式子表述法则,培养他们的表达能力。在运用法则的环节上,无论是例题还是练习都以学生为中心,给学生充分的时间去运算,去暴露问题,不拘泥于形式的讨论、合作,可以发现学生不同的思路,锻炼和培养他们的发散思维能力,为后面的教学提供较好的对比分析材料,使学生留下深刻的印象。

  1。初步完成了教学目标,突出了重点,层层推进,突破难点,然后放手让学生去猜想同分母分式的加减法法则,尝试着去解决问题,从分数加减法法则类比出分式的加减法法则,同时引导了学生把一个实际问题数学化。

  2。以讨论的形式呈现给学生例题,让学生去感受体验,学生兴趣高涨。每一个层次的练习完成之后让学生去总结一下在解题过程中的收获,在此基础上引导学生发现解题技巧,通过分析题目的显著特点,来灵活运用方法技巧解决问题。

  3。是体会到一节课的科学设计不仅对一节课的成败取着决定作用,更重要的是对学生数学思想的建立和数学方法的掌握更为重要,科学的设计,有利于充分的挖掘学生的数学潜能,突破难点,事半而功倍,有利于数学学习的深化。

  4。创造性的使用教材,教材只是为我们提供最基本的教学素材,完全可以根据学生的实际情况进行适当调整。由易到难,实在不行,再讲一节习题课,夯实基础。否则后面的分式应用题很难突破。

  5。在小组讨论时,应该留给学生充分的独立思考时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。教师应多注意对困难学生的帮助。

分式教学反思10

  通过复习同分母异分母分数的加减计算类比学习分式的加减运算以分式的通分(分母为异分母的情况)作为预备知识检测,再到学生自主学习所完成的基础练习题及熟练法则,通过让学生板演计算过程后出现的问题(分子的加减,去括号问题及分式的最简化等)给予讲解及问题的讨论。最后是课堂练习巩固和小结作业布置。

  在授课结束后发现学生对于同分母的分式的加减运算掌握得比较好但是对于异分母的分式加减就掌握得不是很理想,很多学生对于分式的通分还很不熟练,也有学生对于计算结果应该为最简分式理解不够总是无法化到最简的形式。

  分式的加减法上完后列举了一道加减混合运算题,在讲解时结合加减混合运算法则进行复习,分式的加减混合运算不同的是分母或者分子当中如果有出现可以因式分解的应该先进行因式分解,异分母的分式应先进行通分化为同分母再进行计算,除法应转化为乘法。并且计算的.最终结果应该为最简分式的形式,在计算时应先观察分式的特点从而分析是不是可以结合乘法的分配律进行计算从而达到化繁为简的目的。

分式教学反思11

  通分一课的教学目标是让学生理解通分的意义和掌握通分的方法。它是分式基本性质的一种应用,是在学生已经掌握了分式的基本性质和约分的基础上进行教学的,它为后面学习异分母分式加减法的奠定基础。通分的方法其实不难,关键是让学生理解为什么要通分和通分的方法,所以,在教学中,我引导学生利用分式基本性质把分母变成相同而大小不变的方法就是通分这一概念。出示三道练习题,指导学生巩固运用通分的方法。本节课,我能够以一个组织者、引导者和参与者的身份进行教学活动,注重调动学生的学习兴趣,创设了良好的探究交流的平台。不把自己的'意愿强加给学生。给学生多练,领悟通分的意义及方法,使本节课收到预期效果。

  所以,如果我们在数学课堂教学中经常注视培养学生的思维能力,当学生的思维受阻时,教师适时点拨,当学生的思维遇卡时,教师巧妙催化,这样会使学生在题中数量间自由地顺逆回环,导致学生发散思维能力的形成,以有利于培养学生的创新思维。

分式教学反思12

  成功:

  1、本节课初步达到了教学目标,突出了重点,层层推进,突破难点,然后放手让学生去猜想同分母分式的加减法法则,尝试着去解决问题,从对同分母分数加减法法则类比出同分母分式的加减法法则,同时引导了学生把一个实际问题数学化;低起点,顺应着学生的认知过程,设置了随堂练习,在用法则的重点环节上,无论是例题的分析还是练习题的落实,都以学生为中心,给足充分的时间让学生去计算,去暴露问题,也为后一步的教学提供了较好的对比分析的材料,让他们留下深刻的印象。

  2、是以讨论的形式呈现给学生例题1,让学生去感受体验,学生兴趣高涨。每一个层次的练习完成之后让学生去总结一下在解题过程中的收获,在此基础上引导学生发现解题技巧,把学生的认知提升了一个高的层面上,达到了用法则而不拘泥于法则,通过分析题目的显著特点,来灵活运用方法技巧解决问题。同时把时间和空间留给学生,让他们多一些练习,多一些巩固。

  3、是体会到一节课的科学设计不仅对一节课的成败取着决定作用,更重要的是对学生数学思想的建立和数学方法的掌握欲为重要,科学的设计,有利于充分的挖掘学生的数学潜能,突破难点,事半而功倍,有利于数学学习的深化。

  不足:

  (1)学生对于同分母的分式的加减运算掌握得比较好,但是对于异分母的分式加减就掌握得不是很理想,很多学生对于分式的`通分还很不熟练,也有学生对于计算结果应该为最简分式理解不够总是无法化到最简的形式。

  (2)分式的加减法上完后列举了一道加减混合运算题,在讲解时结合加减混合运算法则进行复习,分式的加减混合运算不同的是分母或者分子当中如果有出现可以因式分解的应该先进行因式分解,异分母的分式应先进行通分化为同分母再进行计算,在计算时应先观察分式的特点,达到化繁为简的目的。

分式教学反思13

  昨天去实验小学听课,课题是《分式的乘除》的第一课时,刚开始秦老师利用类比的数学思想,通过复习分数的乘除的运算法则推出分式的乘除法则。紧接着秦老师要求组长批改组员的预习作业,随后由小组组长汇报检查的情况,并把计算题出现那些错误一一类举出来。我看看手表已经过了15分钟,随后秦老师以学生错题为例题,讲解了两题分子、分母都是单项式的乘除运算。当时我在疑惑,一节课最重要的是前20分钟,为什么还没有讲解分子、分母是多项式的分式乘除的计算题呢?我觉得计算是学生的弱项,应该教师先做好解题的示范,然后学习加强练习,只有学生自己动手计算才会发现不足。课进行到25分钟左右,秦老师开始讲解分子、分母是多项式的分式乘除。秦老师不是自己单独讲解,而是和学生互动,一步一步的.写出解题过程,并要求学生说出依据。最后秦老师请了四位学生在黑板上做练习,可能时间上没有分配好,留有余尾。

  随后我们进行了评课,听了秦老师的课题简述,我才发现课堂上自己的评课方向是错误的,秦老师的课题就是研究学生预习出会出现的错误以及探讨预习中错题的类型,最后我觉得秦老师的课还是很优秀的,值得我们学习。

分式教学反思14

  数学的学习过程应当是一个充满生命力的过程。我们在教学中也应该想办法让学生动起来,使课堂活动起来。在今天我所听的《分式方程的应用》一课,也使我体会到了这一点。

  本节课是《分式方程的应用》的第一课时,课堂上顾老师并没有纯粹地就题论题,而是采用了如下方法:一是改变例题和练习的呈现形式,使教学内容更有趣味性。二是让学生自编应用题目,体验学习数学的快乐。尤其是在让学生自编应用题的时候,个个都是紧皱眉头,冥思苦想,很快就开始你说我说,一个个精神抖擞,煞那间教室中一片热闹的场面。顾老师这时就抓住这个机会,让同学们之间互相交流,各自说出自己编的.题目。同学们都能联系自己身边发生的或与生活密切相关的实际例子。通过这样的活动,我认为一方面可以锻炼学生的思维,另一方面也可以提高学生解决实际问题的能力。从而也可以使学生体会到数学的应用价值。

  在以后的教学中,我也要象顾老师一样,精心设计活动,充分调动学生参与学习的积极性,使学生动起来,课堂活起来,真正使学生乐有所学,乐有所获。

分式教学反思15

  这一周第十七章分式结束了。原以为本章内容较易理解,经过适度的训练,学生会掌握得很好。可是经过一次小考及平时的观察,发现学生的运算能力很差,运算的准确率太低;应变能力就更不用说了,稍微变一变题型,学生就不会做。其实,造成这种现状的原因不仅与学生自身有极大关系,与教师的教学也有一定的关系。反思自己这一个月的教学行为,我觉得自己身上或多或少还存在以下几方面的问题:

  1、教学过程中还存在着“不敢放手”的现象。

  课堂教学中,我确实很注意运用学案式教学,精心设计问题引发学生思考,组织学生进行讨论。但问题提出后没给学生留有足够的思维空间,小组讨论时间也不够总担心学生想不周全或课堂教学内容完不成,因此对于某些问题,不等学生思考完善就急于给出答案。导致学生对问题的片面理解,不能引发学生深思,也就不能给学生留下深刻印象,因此造成很多学生对于做过的题一点印象都没有。

  2、课堂教学中注意培养学生的发散思维,但有时却“贪多而嚼不烂”,忽略了学生的接受能力。

  在平时的'授课过程中,特别是讲解例、习题时,我非常注意培养学生的发散思维,通过“一题多解,一题多变”的反复训练,开拓学生视野,不断总结方法,并进行相关联系,培养学生多角度思考问题,多途径解决问题的能力。但有时却忽略了学生的接受能力,特别是中、下等生的理解接受能力。因此,部分学生的应变能力没能得到提高,反而有个别学生将几种方法混为一谈记作一锅粥。

  3、课堂教学中缺乏必要的耐心关注中下等生,使他们学习缺乏信心,导致两极分化。

  课堂教学中,往往将精力集中在中上等生的身上,大多而忽略了更需要关心的中下等生。致使他们越落越远,最终失去学习信心而加重两极分化。

  针对以上问题,下阶段准备采取以下补救措施:

  1、还给学生一片思维的空间,要充分相信学生,给小组更多的讨论时间。

  2、对过多的习题进行适当筛选,精讲精练,在45分钟内进行有效学习

  3、课堂上注意教学节奏,关注中下等生的学习,让他们跟上老师的步伐,尽量缩小两极分化

  4、多给学生自己练习的时间,让学生真正成为学习的主体,充分发挥小组长的作用。

【分式教学反思】相关文章:

分式教学反思03-26

《分式与分式方程复习》教学反思04-14

分式的乘除教学反思03-31

分式方程教学反思02-18

分式和方程教学反思12-23

分式方程教学反思06-28

分式的基本性质教学反思03-25

分式方程教学反思15篇02-19

分式方程教学反思20篇01-03