高二数学教学计划

时间:2022-12-26 17:15:06 教学计划 我要投稿

高二数学教学计划(汇编15篇)

  时间过得太快,让人猝不及防,我们的工作又进入新的阶段,为了今后更好的工作发展,请一起努力,写一份计划吧。那么你真正懂得怎么写好计划吗?下面是小编帮大家整理的高二数学教学计划,欢迎大家分享。

高二数学教学计划(汇编15篇)

高二数学教学计划1

  一、教材分析。

  1、教材地位、作用。

  本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3.2.1节古典概型。它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。

  古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。

  2、学情分析。

  学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。

  二、教学目标。

  1、知识与技能目标。

  (1)理解等可能事件的概念及概率计算公式。

  (2)能够准确计算等可能事件的概率。

  2、过程与方法。

  根据本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能性事件的概念及其概率公式,使学生对问题的理解从感性认识上升到理性认识。

  3、情感态度与价值观。

  概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。

  三、重点、难点。

  1、重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

  2、难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

  四、教学过程。

  1、创设情境,提出问题。

  师:在考试中遇到不会做的选择题同学们会怎么办?在你不会做的前提下,蒙对单选题容易还是蒙对不定项选择题容易?这是为什么?

  通过这个同学们经常会遇到的问题,引导学生合作探索新知识,符合“学生为主体,老师为主导”的现代教育观点,也符合学生的认知规律。随着新问题的提出,激发了学生的求知欲望,使课堂的有效思维增加。

  2、抽象思维。形成概念、

  师:考察试验一“抛掷一枚质地均匀的骰子”,有几种不同的结果,结果分别有哪些?

  生:在试验中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”。

  师:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。

  师:考察试验二“抛掷一枚质地均匀的硬币”有哪些基本事件?

  生:在试验中基本事件有两个,即“正面朝上”和“反面朝上”。

  师:那基本事件有什么特点呢?

  问题:

  (1)在“抛掷一枚质地均匀的骰子”试验中,会同时出现“1点”和“2点”这两个基本事件吗?

  (2)事件“出现偶数点”包含了哪几个基本事件?

  由如上问题,分别得到基本事件如下的两个特点:

  (1)任何两个基本事件是互斥的;

  (2)任何事件(除不可能事件)都可以表示成基本事件的和。

  (让学生交流讨论,教师再加以总结、概括)

  让学生归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力

  例1:从字母中任意取出两个不同字母的试验中,有哪些基本事件?

  师:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果写出来,本小题我们可以按照字母排序的顺序,用列举法列出所有基本事件的结果。

  解:所求的基本事件共有6个:

  ____________________________________________________________________________________。

  由于学生没有学习排列组合知识,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了求古典概型中基本事件总数这一难点,同时渗透了数形结合及分类讨论的数学思想。

  师:你能发现前面两个数学试验和例1有哪些共同特点吗?(先让学生交流讨论,然后教师抽学生回答,并在学生回答的基础上再进行补充)

  试验一中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是;

  试验二中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是;

  例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是;

  经概括总结后得到:

  ①试验中所有可能出现的基本事件只有有限个;

  ②每个基本事件出现的可能性相等。

  我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。

  学生在合作交流的`探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳问题的能力。

  3、概念深化,加深理解。

  试验“向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的”。你认为这是古典概型吗?为什么?

  生:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。

  试验“某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环’。你认为这是古典概型吗?为什么?

  生:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。

  这两个问题的设计是为了让学生更加准确的把握古典概型的两个特点,突破了如何判断一个试验是否是古典概型这一教学难点,培养学生思维的深刻性与批判性。

  4、观察比较,推导公式。

  师:在古典概型下,随机事件出现的概率如何计算?(让学生讨论、思考交流)

  生:试验二中,出现各个点的概率相等,即

  P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)

  由概率的加法公式,得

  P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1

  因此P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=

  进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,

  P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)=++==

  P(“出现偶数点”)=?=

  师:根据上述试验,你能概括总结出,古典概型计算任何事件的概率计算公式吗?

  生:_________________________________________________________________。

  学生通过运用观察、比较方法得出古典概型的概率计算公式,体验数学知识形成的发生与发展的过程,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。

  师:我们在使用古典概型的概率公式时,应该还要注意些什么呢?(先让学生自由说,教师再加以归纳)在使用古典概型的概率公式时,应该注意:

  ①要判断该概率模型是不是古典概型;

  ②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

  深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。

  5、应用与提高。

  例2:单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考查的内容,他可以选择惟一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?

  解:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,从而由古典概型的概率计算公式得:

  探究:在标准化考试中既有单选题又有不定项选择题,不定项选择题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?

  解:这是一个古典概型,因为试验的可能结果只有15个:选择A、选择B、选择C、选择D,选择AB、选择AC、选择AD、选择BC、选择BD、选择CD、选择ABC、选择ABD、选择ACD、选择BCD、选择ABCD,从而由古典概型的概率计算公式得:

  P(“答对”)=1/15

  解决了课前提出的思考题,让学生明确解决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

  例3:同时掷两个骰子,计算:

  (1)一共有多少种不同的结果?

  (2)其中向上的点数之和是5的结果有多少种?

  (3)向上的点数之和是5的概率是多少?

  (教师先让学生独立完成,再抽两位不同答案的学生回答)

  学生1:

  ①所有可能的结果是:

  (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种。

  ②向上的点数之和为5的结果有2个,它们是(1,4)(2,3)。

  ③向上点数之和为5的结果(记为事件A)有2种,因此,由古典概型的概率计算公式可得

  学生2:

  ①掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,我们可以用列表法得到(如图),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果。

  由表中可知同时掷两个骰子的结果共有36种。

  ②在上面的所有结果中,向上的点数之和为5的结果有4种:(1,4),(2,3),(3,2),(4,1)。

  ③由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得

  师:上面同一个问题为什么会有两种不同的答案呢?(先让学生交流讨论,教师再抽学生回答)

  生:答案1是错的,原因是其中构造的21个基本事件不是等可能发生的,因此就不能用古典概型的概率公式求解。

  师:我们今后用古典概型的概率公式求解时,特别要验证“每个基本事件出现是等可能的”这个条件,否则计算出的概率将是错误的。

  本题通过学生的观察比较,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐使学生养成自主探究能力。同时培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣。

  6、知识梳理,课堂小结。

  (1)本节课你学习到了哪些知识?

  (2)本节课渗透了哪些数学思想方法?

  7、作业布置。

  (1)阅读本节教材内容

  (2)必做题课本130页练习第1,2题,课本134页习题3。2A组第4题

  (3)选做题课本134页习题B组第1题

  8、教学反思。

  本节课的教学设计以“问题串”的方式呈现为主,教学过程中师生共同合作,体验古典概型的特点,公式的生成、发现,把“数学发现”的权力还给学生,让学生感受知识形成的过程,获得数学发现的体验。将学习的主动权较完整地交还给学生。

  本节课始终本着在教师的引导下,学生通过讨论、归纳、探究等方式自主获取知识,从而达到满意的教学效果。构建利于学生学习的有效教学情境,较好地拓展师生的活动空间,符合新课程的理念。

高二数学教学计划2

  一、学生基本情况

  261班共有学生75人,268班共有学生72人。268班学习数学的气氛较浓,但由于高一函数部分基础特别差,对高二乃至整个高中的数学学习有很大的影响,数学成绩尖子生多或少,但若能杂实复习好函数部分,加上学生又很努力,将来前途无量。若能好好的引导,进一步培养他们的学习兴趣,

  二、教学要求

  (一)情意目标

  (1)通过分析问题的方法的教学、通过不等式的一题多解、多题一解、不等式的一题多证,培养学生的学习的兴趣。

  (2)提供生活背景,使学生体验到不等式、直线、圆、圆锥曲线就在身边,培养学数学用数学的意识。

  (3)在探究不等式的性质、圆锥曲线的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

  (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

  (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。 (6)让学生体验发现 挫折矛盾顿悟新的发现这一科学发现历程的幻妙多姿

  (二)能力要求

  1、培养学生记忆能力。

  (1)在对不等式的性质、平均不等式及思维方法与逻辑模式的学习中,进一步培养记忆能力。做到记忆准确、持久,用时再现得迅速、正确。

  (2)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。 (3)通过揭示解析几何有关概念、公式和图形直观值见的对应关系,培养记忆能力。

  2、培养学生的运算能力。

  (1)通过解不等式及不等式组的训练,培养学生的运算能力。

  (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

  (3)通过解析法的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

  (4)通过一题多解、一题多变培养正确、迅速与合理、灵活的'运算能力,促使知识间的滲透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算能力。

  3、培养学生的思维能力。

  (1)通过含参不等式的求解,培养学生思维的周密性及思维的逻辑性。

  (2)通过解析几何与不等式的一题多解、多题一解、通过不等式的一题多证,培养思维的灵活性和敏捷性,发展发散思维能力。

  (3)通过不等式引伸、推广,培养学生的创造性思维。

  (4)加强知识的横向联系,培养学生的数形结合的能力。

  (5)通过解析几何的概念教学,培养学生的正向思维与逆向思维的能力。

  (6)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

  4、培养学生的观察能力。

  (1)在比较鉴别中,提高观察的准确性和完整性。

  (2)通过对个性特征的分析研究,提高观察的深刻性。

  (三)知识要求

  1、掌握不等式的概念、性质及证明不等式的方法,不等式的解法;

  2、通过直线与圆的教学,使学生了解解析几何的基本思想,掌握直线方程的几种形式及位置关系,掌握简单线性规划问题,掌握曲线方程、圆的概念。

  3、掌握椭圆、双曲线、抛物线的定义、方程、图形及性质。

  三、教材简要分析

  1、不等式的主要内容是:不等式性质、不等式证明、不等式解法。不等式性质是基础,不等式证明是在其基础上进行的;不等式的解法是在这一基础上、依据不等式的性及同解变形来完成的。20xx年高二下数学教学计划20xx年高二下数学教学计划。不等式在整个高中数学中是一个重要的工具,是培养运算能力、逻辑思维能力的强有力载体。

  2、直线是最简单的几图形,是学习圆锥曲线、导数和微分等知识的的基础。,是直线方程的一个直接应用。主要内容有:直线方程的几种形式,线性规划的初步知识,两直线的位置关系,圆的方程;斜率是最重要的概念,斜率公式是最重要的公式,直线与圆是数形结合解析几何相互为用思想的载体。

  3、圆锥曲线包括椭圆、双曲线、抛物线的定义,标准方程,简单几何性质,以及它们在实际中的一些运用。椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的方程,并通过分析标准方程研究它们的性质。

  四、重点与难点

  (一)重点

  1、不等式的证明、解法。

  2、直线的斜率公式,直线方程的几种形式,两直线的位置关系,圆的方程。

  3、椭圆、双曲线、抛物线的定义,标准方程,简单几何性质。

  (二)难点

  1、含绝对值不等式的解法,不等式的证明。

  2、到角公式,点到直线距离公式的推导,简单线性规划的问题的解法。

  3、用坐标法研究几何问题,求曲线方程的一般方法。

  五、教学措施

  1、教学中要传授知识与培育能力相结合,充分调动学生学习的主动性,培育学生的概括能力,是学生掌握数学基本方法、基本技能。

  2、坚持与高三联系,切实面向高考,以五大数学思想为主线,有目的、有计划、有重点,避免面面俱到,减轻学生的学习负担。

  3、加强教育教学研究,坚持学生主体性原则,坚持循序渐进原则,坚持启发性原则。研究并采用以发现式教学模式为主的教学方法,全面提高教学质量。

  4、积极参加与组织集体备课,共同研究,努力提高授课质量

  5、坚持向同行听课,取人所长,补己之短。相互研究,共同进步。

  6、坚持学法研讨,加强个别辅导(差生与优生),提高全体学生的整体数学水平,培育尖子学生。

  7、加强数学研究课的教学研究指导,培养学识的动手能力。

  六、课时安排

  本学期共81课时

  1、不等式18课时

  2、直线与圆的方程25课时

  3、圆锥曲线20课时

  4、研究课18课时

高二数学教学计划3

  一、指导思想

  1、获得必要的基本知识和技能,反复复习前面所学知识,加深印象。通过不同形式的自主学习,探究活动,培养学生对数学的兴趣。

  2、发展数学应用意识,学会将数学知识运用于生活。

  3、树立学生能学好数学的信心。

  二、基本情况分析

  本学期学的内容是拓展模块的数学知识,主要包括三角函数、二次曲线、概率与统计的相关知识点,与基础模块、职业模块相比,知识变的有一定的难度,并且更系统化,教学中估计困难不少,数学基础的差异程度加大,为教学的因材施教增加了难度。

  我校的生源对象一般都是中考落榜生。学习上的挫折使他们失去了学习的信心和进取心。为了求职的需要,有部分学生自愿选择进入中职学校学习,但有相当一部分学生是迫于外界某种压力,如父母的强烈要求等,而不得不进入职业学校学习的;还有一些学生初中都没有念完,是家长为避免其子女在社会上出乱子,把孩子送到学校,学习知识则放在次要的位置。由于学生入学时,初中阶段的文化基础差,年龄小,对专业知识生疏,因此,接受能力、分析能力、思维能力偏低,综合素质普遍不高,学习能力差异较大等,给学校的`教育管理和组织教学带来了很大的困难。

  学生自身数学基础薄弱,基本概念模糊不清,基本方法掌握不扎实,知识积累量不够多,遗忘速度快,对问题的分析能力差,在上课时要尽可能的放慢讲课速度,反复及时督促学生复习已学知识和预习新知识,多练习,以加深印象。

  三、教学目标

  理解所学知识的概念,能够通过数学语言描述,掌握新知识的灵活应用,熟练新知识的性质特征的实际应用。

  着眼于数学教学的实际,通过“低起点、巧衔接”,力求实现学生乐于学,遵循学生认知发展的规律,降低知识的起点,由已知到未知,由浅入深,由具体到抽象。

  四、方法措施

  1、选取贴近学生生活的数学实例引导新知识,使学生产生生活中处处存在数学,以达到培养数学兴趣的目的。

  2、通过实堂演练,引发学生的思考和探索,培养自主学习,形成逻辑思维习惯

  五、课程安排及教学进度

  余弦

  周活动安排

  周次

  时间

  活动安排

  备注

  1

  2.28-3.6

  两角和与差的正弦公式

  2

  3.7-3.13

  两角和与差的余弦公式

  3

  3.14-3.20

  正弦型函数

  4

  3.21-3.27

  正弦定理,

  5

  3.28-4.3

  余弦定理

  6

  4.4-4.10

  三角公式及应用复习

  7

  4.11-4.17

  椭圆

  8

  4.18-4.24

  双曲线

  9

  4.25-5.1

  期中考试

  10

  5.2-5.8

  抛物线

  11

  5.9-5.15

  二次曲线及应用复习

  12

  5.16-5.22

  概率与统计

  13

  5.23-5.29

  排列与组合

  14

  5.30-6.5

  二项式定理

  15

  6.6-6.12

  离散型随机变量及其分布

  16

  6.13-6.19

  二项分布,正态分布

  17

  6.20-6.26

  本章复习

  18

  6.27-7.3

  期末考试

  19

  7.4-7.10

  总结

高二数学教学计划4

  一、教材依据

  本节课是湘教版数学(必修三)第二章《解析几何初步》第二节《1.2直线的方程》第一部分《直线方程的点斜式》内容。

  二、教材分析

  直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径。在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的。从初中代数中的一次函数引入,自然过渡到本节课想要解决的问题——求直线方程问题。在引入,过程中要让学生弄清直线与方程的一一对应关系,理解研究直线可以从研究方程和方程的特征入手。

  在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线方程。

  三、教学目标

  知识与技能:(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;

  (2)能正确利用直线的点斜式、斜截式公式求直线方程。

  (3)体会直线的斜截式方程与一次函数的关系。

  过程与方法:在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。

  情态与价值观:通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。

  四、教学重点

  重点:直线的点斜式方程和斜截式方程。

  五、教学难点

  难点:直线的点斜式方程和斜截式方程的应用。

  要点:运用数形结合的思想方法,帮助学生分析描述几何图形。

  六、教学准备

  1.教学方法的选择:启发、引导、讨论.

  创设问题情境,采用启发诱导式的教学模式引导学生探索讨论,学生主动参与提出问题、探索问题和解决问题的过程,突出以学生为主体的探究性学习活动。

  2.通过让学生观察、讨论、辨析、画图,亲身实践,调动多感官去体验数学建模的思想;学生要学会用“数形结合”的方法建立起代数问题与几何问题间的密切联系。为使学生积极参与课堂学习,我主要指导了以下的学习方法:

  ①.让学生自己发现问题,自己通过观察图像归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力。

  ②.分组讨论。

  七、教学过程

  问 题

  师生活动

  设计意图

  1、在直线坐标系内确定一条直线,应知道哪些条件?

  学生回顾,并回答。然后教师指出,直线的方程,就是直线上任意一点的坐标 满足的关系式。

  使学生在已有知识和经验的基础上,探索新知。

  2、直线 经过点 ,且斜率为 。设点 是直线 上的任意一点,请建立 与 之间的关系。

  学生根据斜率公式,可以得到,当 时, ,即

  (1)

  教师对基础薄弱的学生给予关注、引导,使每个学生都能推导出这个方程。

  培养学生自主探索的能力,并体会直线的方程,就是直线上任意一点的坐标 满足的关系式,从而掌握根据条件求直线方程的方法。

  3、(1)过点 ,斜率是 的直线 上的点,其坐标都满足方程(1)吗?

  学生验证,教师引导。

  使学生了解方程为直线方程必须满两个条件。

  (2)坐标满足方程(1)的点都在经过 ,斜率为 的直线 上吗?

  学生验证,教师引导。然后教师指出方程(1)由直线上一定点及其斜率确定,所以叫做直线的点斜式方程,简称点斜式.

  使学生了解方程为直线方程必须满两个条件。

  4、直线的点斜式方程能否表示坐标平面上的所有直线呢?

  学生分组互相讨论,然后说明理由。

  使学生理解直线的`点斜式方程的适用范围。

  5、(1) 轴所在直线的方程是什么? 轴所在直线的方程是什么?

  (2)经过点 且平行于 轴(即垂直于 轴)的直线方程是什么?

  (3)经过点 且平行于 轴(即垂直于 轴)的直线方程是什么?

  教师学生引导通过画图分析,求得问题的解决。

  进一步使学生理解直线的点斜式方程的适用范围,掌握特殊直线方程的表示形式。

  6、例2、例4的教学。

  教师引导学生分析要用点斜式求直线方程应已知那些条件?题目那些条件已经直接给予,那些条件还有待已去求。在坐标平面内,要画一条直线可以怎样去画。

  学会运用点斜式方程解决问题,清楚用点斜式公式求直线方程必须具备的两个条件:(1)一个定点;(2)有斜率。同时掌握已知直线方程画直线的方法。

  7、例3的教学。

  求经过点 ,斜率为 的直线 的方程。

  学生独立求出直线 的方程:

  (2)

  在此基础上,教师给出截距的概念,引导学生分析方程(2)由哪两个条件确定,让学生理解斜截式方程概念的内涵。

  引入斜截式方程,让学生懂得斜截式方程源于点斜式方程,是点斜式方程的一种特殊情形。

  8、观察方程 ,它的形式具有什么特点?

  学生讨论,教师及时给予评价。

  深入理解和掌握斜截式方程的特点?

  9、直线 在 轴上的截距是什么?

  学生思考回答,教师评价。

  使学生理解“截距”与“距离”两个概念的区别。

  10、你如何从直线方程的角度认识一次函数 ?一次函数中 和 的几何意义是什么?你能说出一次函数 图象的特点吗?

  学生思考、讨论,教师评价、归纳概括。

  体会直线的斜截式方程与一次函数的关系.

  11、课堂练习第65页练习第1,2,3题。

  学生独立完成,教师检查反馈。

  巩固本节课所学过的知识。

  12、小结

  教师引导学生概括:(1)本节课我们学过那些知识点;(2)直线方程的点斜式、斜截式的形式特点和适用范围是什么?(3)求一条直线的方程,要知道多少个条件?

  使学生对本节课所学的知识有一个整体性的认识,了解知识的来龙去脉。

  13、布置作业:第77页第5题

  学生课后独立完成。

  巩固深化

  八、教学反思

  直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径。在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的。

  本节课的基本题形:

  1、已知直线上一点及直线的倾斜角,求直线的方程并作图;

  2、已知直线上两点,求直线的方程并作图。教学时应注意让学生明确直线的倾斜角与斜率的关系,掌握过两点的直线的斜率公式,训练学生求直线方程的书写格式及直线的规范作图。

高二数学教学计划5

  一、指导思想

  (一)《普通高中数学课程标准(实验)》

  1、课程的基本理念:

  构建共同基础,提供发展平台;提供多样课程,适应个性选择;倡导积极主动、勇于探索的学习方式;注重提高学生的数学思维能力;发展学生的数学应用意识;与时俱进地认识"双基";强调本质,注意适度形式化;体现数学的文化价值;注重信息技术与数学课程的整合;建立合理、科学的评价体系。

  2、课程目标:

  (1)获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  (2)提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  (3)提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  (4)发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和做出判断。

  (5)提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  (6)具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  (二)20xx年普通高等学校招生全国统一考试数学(文科)(广东卷)考试说明

  1、能力要求

  能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。

  (1)空间想象能力:

  (2)抽象根据能力:

  (3)推理论证能力:

  (4)运算求解能力:

  (5)数据处理能力:

  (6)应用意识:

  (7)创新意识。

  2、个性品质要求

  个性品质是指考生个体的情感、态度和价值观,要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义。要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。

  3、难度比例

  试题按其难度分为容易题、中等题、难题,试卷包括容易题、中等题和难题,以中等题为主,试卷的难度系数在0.55左右。

  二、教学工作目标

  (一)隐性目标

  1、努力实现《普通高中数学课程标准(实验)》中对课程目标中的六点说明;

  2、发展学生的能力:

  (1)空间想象能力:

  (2)抽象根据能力:

  (3)推理论证能力:

  (4)运算求解能力:

  (5)数据处理能力:

  (6)应用意识:

  (7)创新意识。

  3、培养学生的个性品质:如具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义。能克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。

  (二)显性目标

  力求使每位学生都获得必要的数学基础知识和基本技能,理解基本的数学概念,数学成绩有所提高,对数学更加感兴趣。结合我所教的两个班的实际,我希望高二14班的数学成绩能在期中、期末中的平均分排在全级前4名,高二15班的数学成绩有所进步,能在期中、期末平均分的排名中排在全级前8名。

  三、学生基本情况分析

  两个班均属普通班,学生基础不好,接受能力差,甚至出现厌学情绪,特别是15班的好几位学生,基本不学数学。所以上课难度有点大。

  四、具体措施

  为了达到上述教学目的,我将采取以下举措:

  (一)向学生介绍学习数学的方法,使同学们养成良好的学习习惯。

  1、提高听课的效率是关键。

  学生学习期间,在课堂的时间占了一大部分。因此听课的效率如何,决定着学习的基本状况,提高听课效率应注意以下几个方面:

  (1)课前预习能提高听课的针对性。预习中发现的难点,就是听课的重点,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。

  (2)听课过程中的科学。首先应做好课前的物质准备和精神准备;其次就是听课要全神贯注。全神贯注就是全身心地投入课堂学习,耳到、眼到、心到、口到、手到。

  (3)特别注意老师讲课的开头和结尾。

  (4)积极思考每一道例题,记录下与老师不同的思路,要认真把握好思维逻辑,分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。

  (5)此外还要特别注意老师讲课中的提示。

  (6)最后一点就是作好笔记,笔记不是记录而是将上述听课中的.要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。

  2、做好复习和总结工作。

  (1)做好及时的复习。

  (2)做好单元复习。学习一个单元后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善,而后应做好单元小节。(3)做好单元小结。单元小结内容应包括以下部分:本单元(章)的知识网络;本章的基本思想与方法(应以典型例题形式将其表达出来);自我体会:对本章内,自己做错的典型问题应有记载,分析其原因。

  (二)改进教学方法及需要注意的问题

  1、改进教学方法,教好新教材

  (1)转变观念,提高对素质教育的认识。在使用新教科书时一定要改进教学方法,按《新大纲》的要求进行,控制教学要求,控制教学难度,确实从"应试教育"转变到贯彻素质教育的轨道上来。要应试,但必须从提高学生数学能力上下功夫.

  (2)要充分利用先进的教学手段,提高教学效益。新的教学手段必然促进教学方法的改革,必然带来新的教学效益。科学计算器已被列入初中的教学内容,高中相应的计算内容已充分使用科学计算器讲授,教师在教学中更应充分利用科学计算器,以提高教学效益,提高学生解决问题的能力。有条件的地方或学校,也要利用电子计算机和多媒体技术作为教学的辅助手段。

  (3)研究新教材 把握好教学中的“度”;研究知识结构,控制教学难度①重视知识的发生过程,淡化纯理论和学生难以接受的东西。②理解基础,重视基础③研究课本例题、习题,发挥例题、习题功能。

  (4)教学要从学生实际出发,教学要符合教育学心理学发展 认知发展,要经历多种水平,多种阶段。教师的教学要设计有直观性、启发性、使学生可接受性。(5)教师的教学要多应用数学发现和解释实际问题。

  (三)多读一些数学教育教学方面的书

  1、数学纵横,如:《华罗庚科普著作选集》、《数学的明天》、《生活中的数学》等等。

  2、波利亚理论与解题研究,如:《怎样解题》、《数学的发现》、《数学与猜想》。

  3、数学教育与数学教学,如:《孙维刚谈全班55%怎样考上北大考上清华》、《中国著名特级教师教学思想录〃中学数学卷》、《杨象富数学教学经验》等等。

  4、趣味数学,如:《关于无穷大的文化史, 计算出人意料,站在巨人的肩膀上》、《趣味数学辞典》、《数学游戏新编》等等。

  5、知识性读物,如:《从杨辉三角谈起》、《谈谈不定方程》、《抽屉原则及其他》等等。

  6、数学竞赛,如:《数学奥林 匹克教程》、《数学竞赛导论》、《历届全国高中数学联赛试题详解》等等。

  7、初等数学研究,《初等数学研究文集》、《初等数学研究的问题与课题》、《不等式研究》等等。

高二数学教学计划6

  一、教学内容分析

  本节课教学内容是《普通高中课程标准实验教科书·数学必修3》(苏教版)中 “3.4互斥事件”第1课时。教材既介绍计算概率的两种简单模型——古典概型、几何概型,开始学习求解复杂事件的概率。对复杂事件的概率的计算,就需要分析复杂事件与基本事件间的关系,以及复杂事件发生的概率与基本事件发生的概率间的关系,为此,教材引入互斥事件、对立事件概念,从中渗透化繁为简的指导思想。本节内容在高考考试说明要求为A级。

  二、学生学习情况分析

  针对本校提倡的“先学——后批——自纠——点评——反思”教学流程,学生在充分预习的情况下对教学案中的“自学质疑”板块已有较好的把握,绝大多数学生能够完成其中问题,但仍有部分学生对互斥事件、对立事件、基本事件三者概念产生混淆,对古典概型、几何概型的应用不太熟练,对问题的情境的理解不够到位,分类讨论、正难则反的数学思想还没得到深度认同。

  三、设计思想

  本节课是在新课程标准实施背景下,结合市教育局倡导的“三案六环节”教学模式,结合自身“知识问题化,问题层次化”的设计思路展开的,与以往稍有不同的是突出了学生作为课堂的主体地位,教师主要发挥引导、评价及完善功能。整个过程为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解决疑难问题的尝试活动,在知识巩固和灵活运用的过程中,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。

  四、设计思路

  (1)从时间分配上来说,首先由学生回答课件提出的一系列问题占用10分钟,接着有15分钟的精彩展示,由学生根据课前板书的内容展开讲解交流,然后借助导学案的巩固题、变题进行讨论占用15分钟,最后有5分钟的课堂小结。

  (2)从教学安排上来说,上课前,学案学生提前完成,教师及时审阅初步了解学情状况;课堂上,学生精彩展示细致书写并配以适当讲解达到自己说的出,大家听得懂,接着,提供变题让全体学生积极解答达到及时巩固升华的目的,接着学生完成本课时的巩固案,最后,让学生作出课堂反思总结。

  (3)从内容安排上来说,分三大块:第一块,问题情景(课件);第二块,交流展示(预习案);第三块,巩固提高(巩固案、变题)。

  五、教学目标

  1. 了解互斥事件及对立事件的概念;

  2. 能判断两个事件是否是互斥事件还是对立事件;

  3. 了解两个互斥事件概率的计算公式;

  4. 注意学生思维习惯的培养,在顺向思维受阻时,转而逆向思维;

  5. 通过学生“自学、互学、群学”培养学生自主探究和合作交流的良好品质,激发学生学习数学的兴趣。

  六、教学重点和难点

  教学重点:互斥事件和对立事件概率的应用;

  教学难点:互斥事件和对立事件概念的理解;

  教学准备:学案、巩固案、多媒体课件、遥控激光笔。

  七、教学过程设计

  (一) 课前:学生完成预学案,教师及时审阅

  [设计意图] 数学教学立足于问题处理,一方面,先给学生足够的时间充分思考不仅可以增加课堂教学的容量,而且能够提高教学内容的针对性,从而达到课堂效益的最大化;另一方面,教师能够通过教学案批阅反馈的信息,很好地了解学生对知识的掌握情况,抓住学生的难点和疑点,从而提高课堂讲解的实效性。

  [师生活动] 教师:由课代表转发教学案(教学案另补附上)

  学生:独立完成预学案部分,并及时上交(自学)

  教师:及时审阅,做好反馈后返还学生

  学生:领取教学案,相互讨论做好订正(互学、群学)

  [学情预设] 学生通过“自学、互学、群学”后,主要会有如下疑难问题:

  (1)交流展示中第1题,学生对互斥事件和对立事件的概念的把握不够准确.

  (2)交流展示中第2题,学生在正面分析问题时分类的情况较多,尝试可以通过逆向思维解决,从而避免分类,渗透“正难则反”的数学思想.

  (3)交流展示中第3题,学生在将复杂事件通过基本事件表示时有一定的难度,还有解答时的.规范性有待加强.

  (二) 课堂:教师设计问题串,学生互动交流

  [设计意图] “知识问题化,问题层次化”一组好的问题将学生带入到一种情境,能够激发学生的求知欲,使学生学习变被动为主动,从而在课堂上迸发出智慧的火花.

  [师生活动] 教师:问题1.设置问题情景,一次考试中,一位学生能否既为良又为优? 学生:·······

  教师:问题2.那么这位同学体育成绩为“优良”(优或良)的概率是多少? 学生:······

  教师:问题3.尝试抽象出互斥事件的概念及概率的求解公式?

  学生:······

  教师:问题4.在两个互斥事件中,如果必有一个发生,则两者的关系如

  何?

  学生:······

  教师:引导学生找出互斥事件、对立事件的关系并加以总结.

  (三)课堂:学生精彩展示,教师实时点评

  [设计意图] 兴趣是最好的老师,激发学生对数学学习的热情和学生的内驱力是教师的艺术所在。学生将自己的学习成果展示出来与大家分享,在交流过程中潜移默化的增强了学生的自信心,达到让学生不仅会写而且会说,学会分析问题解决问题。教师把自身的角色转换到听众的位置并适时加以点拨引导,形成一种师生平等、共同进步的和谐局面。

  [师生活动] 教师:根据学生板演内容,学生有序讲解。

  学生:·······

  教师:问题1:口述互斥事件、对立事件、基本事件的概念,并说明三

  者的关系?

  学生:······

  教师:问题2:此问题可以从反面这个角度考虑吗,有怎样的效果呢?

  学生:······

  教师:问题3:比较发现设置的两个问题,给同学哪些启示?

  学生:······

  教师:问题4:变题介绍将“4只红球,4只白球中随机取出3只球”,

  给出的下列事件是对立事件的有哪些?

  学生:······

  (四)课堂:教师善于变题,学生随机应变

  [设计意图] 教学内容的深度应该逐层推进,注意将学生思维提高到一定的高度,从而达到智慧火花的碰撞。教师能够善于捕捉学生的闪光点,提高学生学习的热情和动力,使学生体验到成功的愉悦感,变“要我学”为“我要学”的主动学习。

  [师生活动] 教师:问题1:迅速完成巩固案的强化练习,总结课堂所学知识点?

  学生:······

  教师:问题2:解答概率习题的规范?

  学生:······

  [学情预设] 既完成预学案上习题之后,教师发放巩固案供学生解答,主要问题预测如下:

  (1)矫正反馈中练习题对互斥事件和对立事件知识点的强化.

  (2)学生对概率解答题的解答规范有所欠缺.

  (五)课堂:学生自我总结,教师完善补充

  [设计意图] 经过习题演练过后,必须形成一定的思想方法,这样才能将数学学活,

  知识的升华过程所能达到的高度因人而异,但数学素养的提高可以通过交流互相弥补。通过学生的总结,不仅培养学生的归纳总结的能力和语言表达能力,而且在师生交流过程中各取所长,达到“青出于蓝胜于蓝”的境界。

  [师生活动] 教师:问题1:变题中,分类的情况有哪些?

  学生:, ······

  教师:.

  教师:问题2:出现“至多”、“至少”字眼时,常常需要逆向思维?

  学生:, ······

  [学情预设] 主要难点如下:

  (1)学生对问题分类过多时,需要细心思考,要求“不重复,不遗漏”的原则;

  (2)学生解决问题时习惯正面解决,对逆向思维的把握不准。

  (六)课后:学生完成巩固案,教师及时批阅反馈

  [设计意图]数学知识的内化是需要一个过程,是经过学生自身的磨合才能得到认同的,经过一些有针对性的练习能够及时巩固,达到预期的效果.

  [作业布置] 1.巩固案必做题

高二数学教学计划7

  一、教学目标

  (一)知识与技能

  1.通过探究学习使学生掌握几何概型的基本特征,明确几何概型与古典概型的区别.

  2.理解并掌握几何概型的概念.

  3.掌握几何概型的概率公式,会进行简单的几何概率计算.

  (二)过程与方法

  1.让学生通过对随机试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,培养学生观察、类比、联想等逻辑推理能力.

  2.通过实际应用,培养学生把实际问题抽象成数学问题的能力,感知用图形解决概率问题的方法.

  (三)情感、态度、价值观

  1.让学生了解几何概型的意义,加强与现实生活的联系,以科学的态度评价一些随机现象.

  2.通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流的习惯,初步形成建立数学模型的能力.

  二、教学重点与难点

  教学重点:了解几何概型的基本特点及进行简单的几何概率计算.

  教学难点:如何在实际背景中找出几何区域及如何确定该区域的'“测度”.

  三、教学方法与教学手段

  教学方法:“自主、合作、探究”教学法

  教学手段: 电子白板、实物投影、多媒体课件辅助

  四、教学过程

  五、板书:几何概型的概念:设D是一个可度量的区域(例如线段、平面图形、立体图形等).每个基本事件可以视为从区域D内随机地取一点,区域D内的每一点被取到的机会都一样;随机事件A的发生可以视为恰好取到区域D内的某个指定区域d中的点。

  这时,事件A发生的概率与d的测度(长度、面积、体积等)成正比。

  我们把满足这样条件的概率模型称几何概型.

  板书:几何概型的概率计算公式:

高二数学教学计划8

  一、教学内容

  本学期,按照教育局教研室的要求,教学任务比较繁重。选修1—1,第三章《导数》,按照教研室的计划,应该安排在春节前结束,鉴于临近期末考试,这一章没学,这样本学期教学内容共有以下几部分:选修1—1《导数》,选修1—2共四章《统计案例》、《推理与证明》、《数系的扩充与复数的'引入》、《框图》,复习必修1。

  二、教学策略

  按照——年山东省高考数学(文科)考纲的要求,及时调整教学计划,认真抓好学生学习的落实,努力使学生的学成为有效劳动。精心备课,精心辅导,重点抓住目标生不放松,努力使目标生的数学成绩成为有效,积极沟通交流,提高自己的授课水平,同时,认真研究《数学学科课程标准》,学习新课程,应用新课程。

  三、具体措施

  本学期,我主要从以下几个方面抓好教学:

  1、注重学案导学,编好用好学案。注重研究老师如何讲为注重研究学生如何学。

  2、尝试分层次作业,尤其是加餐作业,提高优等生的学习成绩。

  3、抓好学生作业的落实,不定期检查学生的集锦本、练习本。

  4、组织好单元过关,搞好试卷讲评。

  5、积极做好目标学生的思想交流,情感沟通

高二数学教学计划9

  一、指导思想

  本学期高一备课组以学校教务处、教研组、年级组工作计划为指导,以提高教学质量为目标,以优化课堂教学为中心,团结合作,努力提高思想素质和业务素质,互相学习,认真备好课,上好每一节课,并结合新教材的特点,开展研究性学习的活动,在教学中,认真贯彻学校提出的“先学后教”的课堂教学改革方案,抓好基础知识教学,着重学生能力的培养,打好基础,全面提高,争取优异的成绩。

  二、教学目标

  使大多数学生能够掌握高中数学基本知识,解决问题的基本能力,提高学生的数学素养。使多数学生能够进入高一级学府继续学习,提高学业水平测试的合格率以及优秀率。

  复习作为知识巩固的一个有效方法在学习中必不可少。而复习课中例题的精选很重要,是否能起到温故而知新的作用。对应的复习课之后的配套练习与作业的反馈的落实也是复习的一个重要环节。因此如何精选专题复习例题与落实作业反馈成了我们备课组的关注点。

  三、教学措施

  这学期的学习内容对学生来说,整体上偏难,特别是运算能力在这学期将得到深化和强化,所以对教师的要求也必将高。在教学内容方面,我们还是主要按照我们学生的.特点,对症下药,讲清基本题,理顺中档题,适当补充难题;普通班不追求偏和难,特别对圆锥曲线部分的一些重点、难点的计算题,必须详细讲解给学生听,有些问题甚至需要多讲解几遍,让绝大部分学生真正落实到位。每位教师上完课之后需要思考三个问题:我这节课上得如何?有谁的课比我还优秀?怎样上这节课更好、最好并在备课笔记上做好记录,为以后的教育教学提供参考。在课课练上,以基本题为主,重点在中档题上,做错的问题要抓落实,不放弃任何一个学生,不放过任何一个问题。在课堂上,每位教师都要重视板书,因为学生的书写不规范部分来源于教师的板书,每节课最低有1~2题在书写上力求规范。

  四、教学要求

  整体把握新课程,理清贯穿教材的主要脉络,反映和揭示教学内容的内在联系,展示重要概念的来龙去脉。完成新课标要求,培养学生的数学兴趣,发展学生的数学应用意识。还要渗透高考要求,倡导自主学习方式,逐渐提高学生的思维能力,养成独立思考、积极探索的习惯,注重数学思想和方法的渗透,注重数学思维能力的培养。

  五、具体工作

  为了能够将集体备课落到实处,集体备课做到统一时间,统一地点,确定主要内容。

  (1)按上周集体备课中预先确定备课章节,各位教师论轮流发言,指出备课中的思路,重点和难点。

  (2)然后就上述内容请备课组全体成员共同讨论教学任务中的有关教学大纲,疏通教材,指出重难点,列举一些典型例题,精选练习题等,并请有教学经验的老师做必要的解释、说明和补充,备课组长认真做好记录,对于一些认识分歧比较大的地方,认真讨论,达成共识。

  (3)讨论下周教案的编撰的具体事宜,确定四至五课时内容的个体教学目标、重难点、例题选编及作业的布置。

  (4)最后就当前的教学及工作情况,请备课组各成员相互交流,提出建议,说出不足,并由备课组长记录整理,为以后的教学计划或集体备课的适当调整提供第一手宝贵资料。

  以上几点就是我们高二数学组在本学期的工作计划,代表我们全体高二数学教师的工作打算,我们一定能够落实好学校和部门的任务,并能够按照自身的特点和所教班级的具体情况认真做好自己的教育教学工作。希望在我们全体教师的努力下,在期末联考中能取得辉煌的成绩。

高二数学教学计划10

  一、指导思想

  努力把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,立足掌握基本技能和基本能力,着力培养学生的'创新精神,运用数学的意识和能力,奠定他们终身学习的基础。坚持一切为了学生,为了学生一切,人人都能成功的教学理念。

高二数学教学计划11

  教学目标;

  (1)了解频数、频率的概念,了解全距、组距的概念;

  (2)能正确地编制频率分布表;会用样本频率分布去估计总体分布;

  (3)通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法、

  教学重点:正确地编制频率分布表、

  教学难点;会用样本频率分布去估计总体分布

  内容分析

  1、在统计中,用样本的有关情况估计总体的相应情况大体上有两类:一是用样本的频率分布去估计总体分布;二是用样本的某种数字特征去估计总体相应数字特征。本节课解决前者的问题。

  2、讨论样本频率分布的内容在初中”统计初步”中进行了简要的介绍,由于很长时间没有接触这方面知识,因此有必要通过一例重温频率分布有关知识,突出掌握解决问题的步骤,使学生了解处理数据的具体方法。

  3、介绍历史上从事抛掷硬币的几个案例,学习科学家对真理执着追求的精神。

  4、频率分布的条形图与直方图是有区别。条形图是用高度来表示频率,直方图是用面积来表示频率。

  教学过程

  1、引入新课

  (1)介绍对“抛掷硬币”试验进行研究的科学家。

  (2)本次试验结果。

  (3)画出频率分布的条形图。

  (4)注意点:①各直方长条的宽度要相同;②相邻长条之间的间隔要适当。

  (5)结论:当试验次数无限增大时,两种试验结果的频率大致相同。

  2、总体分布

  精确地反映了总体取值的概率分布规律。研究概率分布往往可以研究其频数分布、频率分布,及累积频数分布和累积频率分布。后者作为阅读教科书内容。

  3、复习频率分布

  (演示)问题:有一个容量为20的样本,数据的分组及各组的频数如下:

  [12、5,15、5) 2 [15、5,18、5) 3 [18、5,21、5) 5

  [21、5,24、5) 4 [24、5,27、5) 1 [27、5,30、5] 5

  (1)列出样本的`频率分布表和画出频率分布直方图。

  (2)频率直方图的横轴表示___________;纵轴表示___________。频率分布直方图中,各小矩形的面积等于___________,各小矩形面积之和等于___________。频率直方图的主要作用是___________。

  讲解例题

  为了了解学生身体的发育情况,对某重点中学年满17岁的60名男同学的身高进行了测量,结果如下:

  身高 1、57 1、59 1、60 1、62 1、64 1、65 1、66 1、68

  人数 2 1 4 2 4 2 7 6

  身高 1、69 1、70 1、71 172 1、73 1、74 1、75 1、76 1、77

  人数 8 7 4 3 2 1 2 1 1

  (1)根据上表,估计这所重点中学年满17岁的男学生中,身高下低于1、65m且不高于1、71m的约占多少?不低于1、63m的约占多少?

  (2)画出频率分布直方图,说出该校年满17岁的男同学中身高在哪个范围内的人数所占比例最大?如果该校年满17岁的男同学恰好是300人,那么在这个范围内的人数估计约有多少人?

  (过程略)

  注意点:主要包括两部分:前面重点讲解如何根据数据画出频率分布的直方图,后面重点讲解如何根据样本的频率分布去估计总体的相关情况。

  (a)计算最大值与最小值的差

  (b)确定组距与组数。

  组距的确定应根据数据总体情况,自主选择。本题将组距定为2较为合适,因而组数为11。

  (c)决定分点。

  分点要比数据多一位小数,便于分组。分组区间采用左闭右开。

  (d)列出频率分布表(见教科书)。

  (e)画出频率分布图(见教科书)。

  4、得到样本频率后,应对总体的相应情况进行估计

  5、课堂练习

  教科书习题 1、2第2题。

  板书设计

  一、概念理解 二、应用

  1、频数、频率的容量的关系 例

  2、频率的取值范围 三、小结

  3、分布频率分布表

  四、作业

高二数学教学计划12

  新的课程标准要以学生为主体,强化学生主体能力的培养,提高其物理综合素质。我所任教的是高二(6)、(7)班,其中(6)班是文科重点班。高二是学生专业知识和专业技能提高的关键一年,是高中物理新课教学的最后一年,学生的学习质量直接影响到高二基础会考阶段的复习和最后冲刺会考的效果,因此,我将更全面、更稳实地开展教学工作。

  一、指导思想

  以邓小平同志教育要“三个面向”和江泽民同志“三个代表”重要思想为指导,坚持科学发展观,努力探索和实践以新课程改革为主要内容的教育改革,转变教育观念,更新教育理论,强化专业学习和业务操作训练。使自已更快更好地适应新课程对教师提出的新要求,提高高中物理学科教育教学质量,为我校提升学校知名度和构建和谐的`新保亭中学而作出自已的努力。

  二、学科课程实施

  (一)学科教材

  本学期使用人民教育出版社高中物理选修1—1的教材

  (二)课时安排

  严格按照新课模块教学对课时的要求,确保每一模块新课教学有36课时。另外安排复习、练习和月考10个课时。期中和期末考试时间由学校统一安排进行。

  (三)教学目标要求

  1、知识与技能

  (1)静电学和稳恒电流的学习。

  (2)电磁波的学习

  2、过程与方法

  (1)会运用电磁学的公式计算电学的有关问题。会利用电学的知识解决简单电学问题。

  (2)在理论学习过程中,了解物理的研究方法特别是物理学的实验,要了解实验原理、器材选用及器材结构,了解实验操作规程及实验操作步骤。

  (3)通过有关概念、规律的学习,让学生感受和了解物理学的思想、方法,提高学生的科学素养。

  3、情感、态度与价值观

  通过物理学科的学习,向学生进行科学思想,民族精神等教育,了解物理学在生活中的应用,让学生了解当代、现代我国高科技的发展,进行爱国主义教育。

  三、具体措施

  1、认真备课,精心组织课堂教学。认真备课是上好一节课的前题,是确保45分钟教学质量必不可少的重要环节。

  2、精选练习,加强课后训练。在不增加课业时间的情况下,精选训练题目是提高学习效率,加强巩固的有效方法。

  3、加强学生的学习测评。学习测评是教师及时了解和掌握学生学习情况的有效手段和途径,更是教师及时调整自已教学操作的依据。

  4、做好学生学习和成长的记录,认真细致地做好学生的成长阶段性的评价,及时向学生及其家长汇报。

  附教学进度表

  第一章:6课时

  第二章:8课时

  第三章:8课时

  中段考及讲评:4课时

  第四章:7课时

  测评:4课时

  共37课时

高二数学教学计划13

  一,学生的基本情况

  118班66人,115班48人。118班学习数学的氛围很浓。但由于高一的函数部分基础较差,对高二乃至整个高中的数学学习影响很大。数学成绩或多或少都有尖子生,但如果能认真复习函数部分,学生努力,前途无量。如果我们能很好地引导他们,进一步培养他们的学习兴趣,…

  二,教学要求

  (a)情感目标

  (1)通过问题分析方法、一个不等式问题的多解、一个不等式问题的多解、一个不等式问题的多重证明的教学,培养学生的学习兴趣。

  (2)提供生活背景,让学生体验不等式、直线、圆以及围绕它们的圆锥曲线,培养运用数学学习数学的意识。

  (3)探究不等式和二次曲线的本质,体验获得数学规律的艰辛和乐趣,学会小组合作学习中的交流和相互评价,提高学生的合作意识

  (4)以情感目标为基础,规范教学过程,增强学习信念和信心。

  (5)给学生时间和空间、班级和探索发现的权利,给学生自主探索和合作的机会,在发展思维能力的同时,培养学生的数学情感、学好数学的自信心和追求数学的科学精神。

  (6)让学生体验“发现——个挫折3354个矛盾——个顿悟——个新发现”的科学发现过程的神奇

  (2)能力要求

  1.培养学生的记忆能力。

  (1)在研究不等式的性质、平均不等式、思维方法和逻辑模式时,进一步培养记忆能力。让记忆准确持久,快速正确的重现。

  (2)通过对定义和命题的整体结构的教学,可以揭示它们的本质特征和相互关系,培养对数学本质问题的背景事实和具体数据的记忆。

  (3)通过揭示解析几何的概念、公式和视值之间的对应关系,培养记忆能力。

  2.培养学生的计算能力。

  (1)通过解不等式和不等式组的训练,训练学生的运算能力。

  (2)加强概念、公式、规则的清晰性和灵活性的教学,培养学生的计算能力。(3)通过分析方法的教学,提高学生在操作过程中清晰、合理、简单的能力。

  (4)通过一题多解、一题多变,培养正确、快速、合理、灵活的计算能力,促进知识的渗透和传递。(5)利用数字和形状的结合,寻找另一种提高学生计算能力的方法。

  3.培养学生的思维能力。

  (1)通过用参数求解不等式,培养学生的思维缜密和逻辑思维。

  (2)通过多解、多解、多证分析几何和不等式,培养思维的灵活性和敏捷性,发展发散思维能力。

  (3)通过推广和普及不等式培养学生的创造性思维。

  (4)加强知识的横向联系,培养学生数形结合的能力。(5)通过解析几何的概念教学,培养学生的正向思维和逆向思维能力。

  (6)通过典型例题的不同思路分析,培养思维的灵活性是学生掌握思维转化的.途径。

  4.培养学生的观察能力。

  (1)在比较和鉴别中,提高观察的准确性和完整性。(2)通过对人格特征的分析研究,提高观察深度。(3)知识要求

  1、掌握不等式的概念、性质和证明不等式的方法,不等式的解法;

  2.通过直线和圆的教学,学生可以了解解析几何的基本思想,掌握

  (2)难点1。不等式的解包括绝对值和不等式的证明。2.角度公式、点到直线距离公式的推导及简单线性规划的求解。

  3.用坐标法研究几何问题,寻找曲线方程的一般方法。

  五.教学措施

  1.在教学中,要将传授知识与培养能力相结合,充分调动学生的学习主动性,培养学生的概括能力,使学生掌握数学的基本方法和技能。

  2.坚持与高三接触,踏实面对高考,以数学五大思想为主线,有目的、有计划、有重点,避免面面俱到,减轻学生学习负担。

  3.加强教育教学研究,坚持学生主体性原则,循序渐进,启发性。研究并采用基于“发现教学模式”的教学方法,全面提高教学质量。

  4.积极参与和组织集体备课,共同学习,努力提高教学质量

  5.坚持听同龄人讲课,取长补短。互相学习,共同进步。

  6.坚持学习方法,加强个别辅导(差生和优等生),提高全体学生的整体数学水平,培养尖子生。

  7.加强数学研究性课程的教学和研究指导,培养知识的实践能力。

  第六,课表

  这学期有81个课时。1.不等式18课时

  2.直线圆方程25课时

  3.圆锥曲线20课时

  4.研究班18小时

高二数学教学计划14

  本人这个学期担任高二(9)(10)班的数学科的教学工作,两班人数为132名学生,是理科普通班,学生基础比较薄弱,学习态度一般,个别比较积极。

  一、指导思想:

  使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的.思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二、 教材特点:

  我们所使用的教材是人教版《普通高中课程标准实验教科书数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

  1.亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

  2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

  3.科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

  4.时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

  三.提高教学质量的主要措施:

  1、认真钻研教材和新课程标准。

  2、认真备课,精心设计教案。

  3、转变传统的教育教学观念,优化教学方法。

  4、采取直观教学,注意理论联系实际。

  四、 教法分析:

  1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。

  2.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

  3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  五、教学要求:

  1、了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;了解合情推理和演绎推理之间的联系和差异。

  2、了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。

  3、(理)了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

  4、理解复数相等的充要条件;了解复数的代数表示法及其几何意义;会进行复数代数形式的四则运算;了解复数代数形式的加、减运算的几何意义。

  5、(理)理解分类加法计数原理和分类乘法计数原理;会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题;理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,能解决简单的实际问题;能用计数原理证明二项式定理,会用二项式定理解决与二项展开式有关的简单问题。

  6、(理)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;理解超几何分布及其导出过程,并能进行简单的应用;了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题;理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题;利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义。

  7、了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题:了解独立性检验(只要求22列联表)的基本思想、方法及其简单应用;了解假设检验的基本思想、方法及其简单应用;了解聚类分析的基本思想、方法及其简单应用;了解回归的基本思想、方法及其简单应用。

  9、了解程序框图;了解工序流程图(即统筹图);能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用;了解结构图;会运用结构图梳理已学过的知识、整理收集到的资料信息。

  8、所有考生都学习选修4-4 坐标系与参数方程,理科考生还需学习选修4-5不等式选讲这部分专题内容。

  六、教学措施:

  1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

  2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

  6、重视数学应用意识及应用能力的培养。

  七、提高自身素质的主要措施

  1、认真学习专业知识,不断获取新知识、新信息,多进行总结与反思。

  2、积极参加教研课改活动,多听同行老师的课,经常和经验丰富的老师交流心得。

高二数学教学计划15

  一、指导思想:

  以发展教育的理念为指引,以学校教务处、教研组、年级组工作计划为指南,加强备课组教师的教育教学理论学习,更新教学观念,落实教学常规,全面提高学生的数学能力,尤其是提高创新意识和实践能力,为社会培养创造型人才

  二、学情分析及相关措施:

  教学中要从学生的认识水平和实际能力出发,及时纠正不合理学习方法,研究学生的心理特征,做好高二第一学期与第二学期的衔接工作。注重培养学生良好的数学思维方法,良好的学习态度和学习习惯。具体措施如下:

  (1)注意研究学生,做好高二第一学期与第二学期的衔接工作。

  (2)集中精力打好基础,分项突破难点.所列基础知识依据新课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,讲难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进。

  (3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

  (4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备

  (5)抓好尖子生与后进生的'辅导工作。

  (6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

  三、教学进度:

  第1周 开学报名

  第2周 选修2-2 1.1变化率与导数

  第3周 1.2导数的计算 1.3导数在研究函数中的应用

  第4周 1.4生活中的优化问题举例 1.5定积分的概念

  第5周 1.6微积分基本定理 1.7定积分的简单应用

  第6周 第一章复习2.1合情推理与演绎逻辑

  第7周 2.2直接证明与间接证明 2.3数学归纳法

  第8周 第二章复习 3.1数系的扩充和复数的概念

  第9周 3.2复数代数形式的四则运算 第三章复习

  第10周 期中复习

  第11周 期中考试

  第12周 选修2-3 1.1分类加法计数原理与分步乘法计数原理 1.2排列与组合

  第13周 1.3二项式定理 第一章复习

  第14周 2.1离散型随机变量及其分布列 2.2二项分布及其应用

  第15周 2.3离散型随机变量的均值与方差 2.4正态分布

  第16周 第二章复习

  第17周 3.1回归分析的基本思想及其初步应用

  第18周 3.2 独立性检验的基本思想及其初步应用

  第19周 第三章复习

  第20周 期末总复习

  第21周 期末考试

【高二数学教学计划】相关文章:

高二数学教学计划08-21

高二的数学教学计划12-11

高二数学的教学计划01-21

高二数学教学计划11-08

高二数学下教学计划06-24

高二数学教学计划15篇11-15

高二数学教学计划(15篇)12-22

高二数学教学计划14篇02-09

高二数学教学计划范文8篇07-13

高二数学教学计划(通用20篇)05-26